
Final paper

The final paper must be about 10 pages long, written in Latex, and on a topic related to the
course; it must also connect the material in the book with something in another source or
sources. The topic must be chosen by March 21st, a first draft (which must be complete) is
due April 16th, and the final draft is due April 30th. Here is a list of suggested topics, with
recommended starting points. Let me know if you are interested in something not on this
list. I am also very happy to meet with you for discussions both before and after you choose
your topic.

I prefer for each student to have a different topic, so please send me an email by March
21st dividing the topics into three categories: topics you would be excited about, topics you
don’t mind, and topics you’d rather not work on. I will let you know which topic you’ve
been assigned by the following day.

Also include in your email a ranking of the following presentation dates from most to least
preferred: 4/30, 5/2, 5/7, 5/9, 5/14, 5/16.

(1) Smooth functions and their derivatives. Borel’s Theorem says that for any sequence
(aj)

∞
j=0 of complex numbers, there is f ∈ C∞(R) such that ∂jf(0) = aj (see e.g. [Hö2,

Theorem 1.2.6]). On the other hand, if f ∈ C∞
c (R) but f 6≡ 0, then the sequence

sup |∂jf | cannot grow too slowly: see [Hö2, Theorem 1.3.5 and Lemma 1.3.6].
(2) The topology of D ′. The theory of topological vector spaces applied to D ′ can

be used to give a proof of [FrJo, Theorem 1.5.2] by the Banach–Steinhaus uniform
boundedness principle (see [Do, §20] or [Ru, Theorem 6.17]).

(3) Distributions on manifolds. The behavior of distributions under coordinate transfor-
mations and pullbacks (see [FrJo, Chapter 7]) leads naturally to a theory of distri-
butions on manifolds. One place to read about this is [Hö, §1.8].

(4) The Schwartz kernel theorem [FrJo, Chapter 6] identifies sequentially continuous
operators P : C∞

c (Rn)→ D ′(Rn) with D ′(R2n). This can be applied, for example, to
Peetre’s theorem [Pe], which says that if suppPu ⊂ suppu for all u ∈ C∞

c (Rn) then
P is necessarily a differential operator (see also e.g. [Gr]).

(5) Calderón’s Inverse Problem asks: when can the electrical conductivity of an object
be recovered from boundary measurements of voltage and current? A good starting
point is Calderón’s original paper [Ca]; see also e.g. [Sa, §3].

(6) The Malgrange–Ehrenpreis Theorem says that any constant coefficient linear partial
differential operator has a fundamental solution, and hence that any constant coeffi-
cient PDE can be solved. This has many proofs, giving more or less explicit formulas
and fundamental solutions with various desirable properties. One is in [FrJo, §10.4],
another in [Wa], and a local solvability proof is in [Ta, §1.7].

(7) Smooth linear partial differential equations, in contrast to ones with constant coeffi-
cients, do not always have solutions, even locally. This was first shown by Hans Lewy
in [Le]; you might also consult [Fo, §1.E] and [Jo, Chapter 8].

(8) A differential operator P is hypoelliptic if Pu ∈ C∞ implies u ∈ C∞. For example the
Laplace operator ∆ =

∑n
j=1 ∂

2
j is hypoelliptic but the wave operator ∂2

t −∆ is not.
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Hörmander’s theorem characterizes the constant coefficient hypoelliptic operators
algebraically: see for example [Fo, §6.D] or [Ta, §3.2].

(9) Pseudodifferential operators. A linear differential operator is a ‘function’ P (x, ∂)
which is a polynomial in ∂: a pseudodifferential operator is one where P is replaced
by a more general function. One consequence of their theory is a generalization of
the elliptic regularity theorem [FrJo, Theorem 8.6.1] to operators with nonconstant
coefficients (see e.g. [Ta, §3.1]).

(10) Morawetz estimates for the Schrödinger equation i∂tu + ∆u = 0 give constraints on
the degree to which a quantum wave function can concentrate near any given point,
see e.g. [Wu, §2.1].

(11) The Radon transform of a function is obtained by considering its integral along lines
or hyperplanes and has a nice inversion formula involving fractional powers of the
Laplace operator, see e.g. §5.2 and Problem 8 of [StSh, Chapter 6].

(12) The Poisson summation formula, which we will see in [FrJo, §8.5] can be used to
prove Minkowski’s theorem on lattice points in a convex body. The theory of the
‘geometry of numbers’ which this leads to has applications in number theory (see e.g.
[Do, §34] and [Kö, §79]).

(13) Another application of the Poisson summation formula is to study asymptotics of the
number of lattice points in a ball (see e.g. Landau’s asymptotic formula [Pi, §4.5]).

(14) Fundamental solutions of the wave equation. These can be obtained as another
application of the behavior of distributions under coordinate transformations and
pullbacks (see [FrJo, §7.3], [FrJo, Exercise 7.4], and [Fr, §6.1]).

(15) The Fourier transform, combined with a Tauberian theorem for series convergence,
leads to a proof of the prime number theorem, which gives an asymptotic formula for
the number of primes less than or equal to a given integer (see e.g. [Ru, pp.208–217]).
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