
MA 341 supplement to Mattuck’s Introduction to Analysis

I will try to add to this as the semester goes on. Please send any questions, comments, or corrections
to kdatchev@purdue.edu.

Section 2.4

Problem. Give an upper estimate, in terms of n alone, for

3

4 + n2 + a2 + cos(b2n)
.

Show that this estimate is the best possible, by giving values of a and b for which the bound is
actually attained.

Solution. Combining 0 ≤ a2 and −1 ≤ cos(b2n) gives

3 + n2 ≤ 4 + n2 + a2 + cos(b2n).

Consequently,
3

4 + n2 + a2 + cos(b2n)
≤ 3

3 + n2
.

To see that this upper estimate is the best possible we observe that the bound is attained when
0 = a2 and −1 = cos(b2n). This occurs when a = 0 and b2n = π, i.e. when a = 0 and b = π2−n.

Section 2.5

Problem. Find a number c such that if |a− 1
2 | < ε < 1

4 , then |a−1 − 2| < cε.

Solution. From |a− 1
2 | <

1
4 we have −1

4 < a− 1
2 <

1
4 or 1

4 < a < 3
4 and so 4

3 <
1
a < 4. Next

|a−1 − 2| =
∣∣∣∣1− 2a

a

∣∣∣∣ =
2

a

∣∣∣∣12 − a
∣∣∣∣ < 2

a
ε < 8ε.

Thus we may take c = 8.

Section 3.1

Problem. Find the limit L of the sequence

an =
3n+ 100

n+ 1
.

Find a number N such that |an − L| < 0.1 when n > N .

Solution. We have L = 3 because the dominant terms in the numerator and denominator are
3n and n respectively. To prove this from the definition, given ε > 0 we must find N such that
|an − 3| < ε when n > N . We write

|an − 3| = 3n+ 100− 3n− 3

n+ 1
=

97

n+ 1
.

This is < ε when n+ 1 > 97/ε, or n > −1 + 97/ε, so we can take N = −1 + 97/ε. If ε = 0.1, then
we may take N = 969.
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Section 6.2

Problem. Let

an =
1

n
+ sin

(
2n− 1

4
π

)
.

Find two cluster points of the sequence a1, a2, . . . and, for each cluster point, find a subsequence
converging to it.

Solution. If n = 4k, then

a4k =
1

4k
+ sin

(
8k − 1

4
π

)
=

1

4k
+ sin

(
−1

4
π

)
→ sin

(
−1

4
π

)
=
−1√

2
.

If n = 4k + 1, then

a4k+1 =
1

4k + 1
+ sin

(
8k + 1

4
π

)
=

1

4k + 1
+ sin

(
1

4
π

)
→ sin

(
1

4
π

)
=

1√
2
.

So 1/
√

2 and −1/
√

2 are cluster points, and the subsequences a4k and a4k+1 converge to them
respectively.

Section 6.5

Problem. Let

S = {cos 1

1
,
cos 2

2
,
cos 3

3
, . . . }.

Use the inequalities cos 1 > .5 and −.5 < cos 2 and cos 3 < −.9 to find supS and inf S.

Solution.

If n ≥ 4, then −1 ≤ cosn implies −.25 ≤ (cosn)/n. Since .5 < cos 1 and −.25 < (cos 2)/2 it follows
that (cos 3)/3 < −.3 < (cosn)/n when n 6= 3. Hence inf S = cos 3.

Similarly, if n ≥ 4, then cosn ≤ 1 implies (cosn)/n ≤ .25. Using (cos 2)/2 < .25 and (cos 3)/3 < −.3
shows that (cosn)/n < .5 < cos 1 when n 6= 1. Hence supS = cos 1.

Section 7.4

Problem. Let

an =
100n

n!

Prove that
∞∑
n=1

an converges, and use this result to find lim
n→∞

an.

Solution. We have
an+1

an
=

100n+1

(n+ 1)!

n!

100n
=

100

n+ 1
→ 0,

so the series converges by the ratio test. The terms of a convergent series tend to zero, so lim
n→∞

an =

0.



Section 11.1

Problem. Let f(x) defined by

f(x) = x1/7 cos(1/x), when x 6= 0,

and f(0) = 0. Prove directly from the definition that f is continuous at 0.

Solution. We must check that for any given ε > 0 there is δ > 0 such that |x| < δ implies
|f(x)| < ε. If x = 0, then f(x) = 0 and there is nothing further to check. If x 6= 0 and |x| < δ, then

|f(x)| = |x|1/7| cos(1/x)| < δ1/7,

since | cos(1/x)| ≤ 1. We may set δ1/7 = ε, or δ = ε7. Any smaller choice would also work, such as
δ = ε7/2 or δ = ε7/100.

Problem.

Let f(x) = 2x+ 3. Given ε > 0, find δ > 0 such that |f(x)− 11| < ε when |x− 4| < δ.

Solution.

If |x− 4| < δ, then |f(x)− 11| = |2x+ 3− 11| = |2x− 8| = 2|x− 4| < 2δ. Thus we may set 2δ = ε
to obtain |f(x)− 11| < ε. In other words, one solution is δ = ε/2.



Section 12.2

Problem. Give a lower estimate of the form aA + b with a > 0 for the number of solutions to
sinx = x/A, when A is large.

Solution. Start by counting solutions on intervals of the form [2πn, 2πn + 2π), where n ≥ 0.
Because | sinx| ≤ 1, we need to have |x/A| ≤ 1, or x ≤ A. Since we just need a lower bound we
only look at intervals such that

2πn+ 2π ≤ A. (1)

Figure 1. We use points x where sinx = 0 or 1 as endpoints for the intervals on
which we apply the intermediate value theorem.

We apply the intermediate value theorem to the function

f(x) = sinx− x

A
.

We have

f(2πn) = −2πn

A
< 0,

and

f
(
2πn+

π

2

)
= 1−

2πn+ π
2

A
=
A− 2πn− π

2

A
> 0,

and

f(2πn+ π) = −2πn+ π

A
< 0.

hence, by the intermediate value theorem, f(x) = 0 has a solution in (2πn, 2πn+ π
2 ) and a solution

in (2πn+ π
2 , 2πn+ π). To determine the number of intervals such that (1) holds, we fix a number

N such that A ∈ [2πN, 2πN + 2π), i.e.

2πN ≤ A ≤ 2πN + 2π. (2)

Then we have (1) for n = 0, 1, . . . , N − 1, and so we have found 2N solutions in [0, 2πN). Since −x
is a solution whenever x is, we have at least 4N − 1 real solutions (avoiding double-counting the
solution x = 0 and ignoring a few possible solutions with |x| ≥ 2πN). Using (2), we have at least

4N − 1 ≥ 4
( A

2π
− 1
)
− 1 =

2

π
A− 5

solutions overall. Thus we have the desired lower estimate with a = 2/π and b = −5.



Section 13.2

Problem. Let f : [2, 5) → R be a continuous function such that limx→5− = 4. Prove that f is
bounded on [2, 5).

Solution. By the boundedness theorem, we know that f is bounded on [2, c] for any c ∈ (2, 5).
We have to choose c in such a way that f is also bounded on (c, 5).

To do this, use the limit definition. There is δ > 0 such that |f(x) − 4| < 1 when 5 − δ < x < 5.
That means 3 < f(x) < 5 on (5− δ, 5).

Thus, by the boundedness theorem, there are numbers b1 and b2 such that b1 ≤ f(x) ≤ b2 for all
x ∈ [2, 5− δ1]. But we also have 3 < f(x) < 5 on (5− δ, 5). Combining, we have

min(b1, 3) ≤ f(x) ≤ max(b2, 5)

for all x ∈ [2, 5).

Section 13.3

Problem. Let f : R→ R be a continuous function such that

lim
x→−∞

f(x) = lim
x→+∞

f(x) = +∞

Show that f has a minimum on R.

Solution. By the maximum theorem, for any [a, b] there is c ∈ [a, b] such that f(c) ≤ f(x) for all
x ∈ [a, b]. We need to chose [a, b] in such a ways that f(c) ≤ f(x) for all x outside of [a, b] as well.

To do this, use the limit definition. There is N1 such that x ≥ N1 implies f(x) ≥ f(0). Similarly,
there is N2 such that f(x) ≥ f(0) when x ≤ N2.

Use N2 = a and N1 = b. Then, by the maximum theorem, there is c such that f(c) ≤ f(x) for all
x ∈ [a, b]. We also have f(c) ≤ f(0) ≤ f(x) for all x not in [a, b].

Problem. Let f : (0,∞) → R be continuous and such that limx→∞ f(x) = ∞. Prove that f is
bounded below on (1,∞). Prove that f has a minimum on [2,∞). Give an example of f satisfying
the above properties such that f has no minimum on (0,∞).

Solution. By the definition of limx→∞ f(x) = ∞, there is N such that f(x) > 1 when x > N .
By the boundedness theorem, there is b such that f(x) > b when x ∈ [1, N ]. Hence x ≥ min(b, 1)
when x > 1 and so f is bounded below on (1,∞).

Similarly, by the definition of limx→∞ f(x) = ∞, there is M such that f(x) > f(2) when x > M .
If 2 ≥M then we have f(x) ≥ f(2) when x ≥ 2 and we are done. If M > 2, then, by the minimum
theorem, there is c ∈ [2,M ] such that f(x) ≥ f(c) for all x ∈ [2,M ]. Since f(x) > f(2) ≥ f(c) for
all x > M , it follows that f(x) ≥ f(c) for all x ∈ [2,∞).

An example of f satisfying the above properties with no minimum on (0,∞) is f(x) = x. It has no
minimum on (0,∞) because for every c > 0, we have f(x) < f(c) when x ∈ (0, c), so f(c) cannot
be the minimum.



Section 15.1

Problem. Let a be a given real number, and let n ≥ 1 be an integer. Find all real solutions to
xn + an = (x+ a)n.

Solution. If a = 0 this becomes xn = xn and all real x are solutions. If n = 1 it becomes
x+ a = x+ a and all real x are solutions.

To analyze other values of a and n, let f(x) = xn + an− (x+ a)n, and we are solving f(x) = 0. By
Rolle’s theorem, there is a zero of f ′ between any two zeroes of f . We have f ′(x) = nxn−1−n(x+
a)n−1, and this is zero if and only if xn−1 = (x+ a)n−1.

If n is even and a 6= 0, then xn−1 = (x + a)n−1 is equivalent to x = x + a which has no solutions,
so f(x) = 0 has at most one solution. Since f(0) = 0, we see that x = 0 is the only solution to
xn + an = (x+ a)n then.

If n ≥ 3 is odd and a 6= 0, then xn−1 = (x + a)n−1 has one solution, namely x = −(x + a), or
x = −a/2. That means f(x) = 0 has at most two solutions. We check that f(0) = 0 and f(−a) = 0,
so x = 0 and x = −a are the only solutions to xn + an = (x+ a)n then.

In summary, if a = 0 or n = 1, then all real x are solutions. If a 6= 0 and n is even, then x = 0 is
the only solution. If a 6= 0 and n ≥ 3 is odd, then x = 0 and x = −a are the only solutions.

Section 19.4

Problem. Find numbers a and b such that for all real c we have

0 < a ≤
∫ 1

0

x

2 + sin cx
dx ≤ b < 1.

Solution. From −1 ≤ sin cx ≤ 1 we get 1 ≤ 2 + sin cx ≤ 3 and hence 1
3 ≤

1
2+sin cx ≤ 1 and

x
3 ≤

x
2+sin cx ≤ x. Since

∫ 1
0
x
3dx = 1

6 and
∫ 1
0 xdx = 1

2 we may take a = 1/6 and b = 1/2.



Section 20.4

Let us derive the series

exp(x) =
∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

3!
+ · · · (3)

from exp′(x) = x and exp(0) = 1. Recall that the series on the right converges for all x by the
ratio test. Deriving (3) also shows that setting e = exp(1) is consistent with our previous definition
e =

∑∞
n=0

1
n! .

From the fundamental theorem of calculus we get∫ x

0
exp(t)dt = exp(x)− exp(0) = exp(x)− 1,

and hence

exp(x) = 1 +

∫ x

0
exp(t)dt. (4)

Plugging (4) into itself, i.e. plugging exp(t) = 1 +
∫ t
0 exp(t1)dt1 into (4), gives

exp(x) = 1 +

∫ x

0

(
1 +

∫ t

0
exp(t1)dt1

)
dt

= 1 + x+

∫ x

0

∫ t

0
exp(t1)dt1dt,

and we have the first two terms of the series (3).

Plugging in (4) again, this time in the form exp(t1) = 1 +
∫ t1
0 exp(t2)dt2, gives

exp(x) = 1 + x+

∫ x

0

∫ t

0

(
1 +

∫ t1

0
exp(t2)dt2

)
dt1dt

= 1 + x+
x2

2
+

∫ x

0

∫ t

0

∫ t1

0
exp(t2)dt2dt1dt.

Continuing in this manner we obtain, for any n,

exp(x) = 1 + x+ · · ·+ xn

n!
+

∫ x

0

∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
exp(tn)dtn · · · dt1dt.

To conclude, we must show that the remainders go to zero as n→∞. When x ≥ 0, we have∣∣∣ ∫ x

0

∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
exp(tn)dtn · · · dt1dt

∣∣∣ ≤ exp(x)

∫ x

0

∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
dtn · · · dt1dt

= exp(x)
xn+1

(n+ 1)!

And when x ≤ 0, we have∣∣∣ ∫ x

0

∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
exp(tn)dtn · · · dt1dt

∣∣∣ ≤ ∫ x

0

∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
dtn · · · dt1dt

=
xn+1

(n+ 1)!

In both cases the right hand side goes to zero as n→∞, because it is the n-th term of a convergent
series.


