MA 341 supplement to Mattuck’s Introduction to Analysis

I will try to add to this as the semester goes on. Please send any questions, comments, or corrections
to kdatchev@purdue.edu.

Section 2.4

PROBLEM. Give an upper estimate, in terms of n alone, for
3
4+ n? + a? + cos(b2")
Show that this estimate is the best possible, by giving values of a and b for which the bound is
actually attained.

SoLUTION. Combining 0 < a? and —1 < cos(b2") gives
3+n? <4+ n*+a® + cos(b2").
Consequently,
3 < 3
4+n?+a®+cos(b27) — 3+ n2
To see that this upper estimate is the best possible we observe that the bound is attained when
0 = a® and —1 = cos(h2"). This occurs when a = 0 and b2" = 7, i.e. when a =0 and b = 727",

Section 2.5

PROBLEM. Find a number c such that if |[a — 1| < e < 1, then [a~! — 2| < ce.

SOLUTION. From |a — 3| < ; wehave —> <a—1 <X ori<a<?2andsoj<?1<4 Next
1-2a 2|1 2
|a1—2\:’ :‘—a < —e < 8.
a a |2 a
Thus we may take ¢ = 8.
Section 3.1
PROBLEM. Find the limit L of the sequence
. — 3n + 100
" on41

Find a number N such that |a,, — L| < 0.1 when n > N.

SOLUTION. We have L = 3 because the dominant terms in the numerator and denominator are
3n and n respectively. To prove this from the definition, given € > 0 we must find N such that
|an, — 3| < & when n > N. We write

lap — 3| = 3n +100 — 3n — 3 _ 97 '
n+1 n+1

This is < & when n+1 > 97/, or n > —1 + 97/¢, so we can take N = —1 +97/e. If ¢ = 0.1, then

we may take N = 969.



Section 6.2

PROBLEM. Let

1 ) <2n -1 >
ay = — +sin .
n 4
Find two cluster points of the sequence a1, as,... and, for each cluster point, find a subsequence
converging to it.
SoLUTION. If n = 4k, then
1+, 8k —1 1+, -1 L -1 -1
asr = — + sin T =-—+s¢n|—m sin | —7 | = —.
Tk 4 4k 4 4 V2

If n =4k + 1, then

1 . 8k +1 1 . 1 . 1 1
a4k+1:m+sm 1 s :4k+1—|—s1n Ew — sSin 177 :ﬁ.

So 1/ V2 and —1 / V/2 are cluster points, and the subsequences ay, and a4k+1 converge to them
respectively.

Section 6.5

PROBLEM. Let
cosl cos2 cos3

S=A{ T ' 5 3 yeu
Use the inequalities cos1 > .5 and —.5 < cos2 and cos3 < —.9 to find sup S and inf S.

SOLUTION.

If n > 4, then —1 < cosn implies —.25 < (cosn)/n. Since .5 < cos1 and —.25 < (cos 2)/2 it follows
that (cos3)/3 < —.3 < (cosn)/n when n # 3. Hence inf S = cos 3.

Similarly, if n > 4, then cosn < 1 implies (cosn)/n < .25. Using (cos2)/2 < .25 and (cos3)/3 < —.3
shows that (cosn)/n < .5 < cos1 when n # 1. Hence sup S = cos 1.

Section 7.4

PROBLEM. Let

~ 100"
nl

Qn

[o¢]
Prove that Z a, converges, and use this result to find lim a,.
1 n—oo
n=

SOLUTION. We have o
100™ ! 100
an+1 = i = — 07
an (n+1)1'100" n+1

so the series converges by the ratio test. The terms of a convergent series tend to zero, so lim a, =
n—oo
0.




Section 11.1
PROBLEM. Let f(z) defined by
f(z) = 2" cos(1/z), when x # 0,
and f(0) = 0. Prove directly from the definition that f is continuous at 0.

SOLUTION. We must check that for any given ¢ > 0 there is § > 0 such that |z| < J implies
|f(x)| <e. If £ =0, then f(x) =0 and there is nothing further to check. If z # 0 and |z| < d, then

[f(@)] = ||| cos(1/x)] < 6Y/7,
since | cos(1/x)| < 1. We may set 6'/7 = ¢, or § = £7. Any smaller choice would also work, such as
§=¢e"/20r 6 =¢"/100.
PROBLEM.
Let f(x) =2z + 3. Given £ > 0, find § > 0 such that |f(z) — 11| < € when |z — 4| < 4.
SOLUTION.

If |z — 4] < 0, then |f(z) — 11| = |2z + 3 — 11| = |22 — 8| = 2|z — 4| < 20. Thus we may set 20 = ¢
to obtain |f(z) — 11| < e. In other words, one solution is § = /2.



Section 12.2

PROBLEM. Give a lower estimate of the form aA 4+ b with @ > 0 for the number of solutions to
sinz = x/A, when A is large.

SOLUTION. Start by counting solutions on intervals of the form [27n,27n + 27), where n > 0.
Because |sinz| < 1, we need to have |x/A| < 1, or x < A. Since we just need a lower bound we
only look at intervals such that

2mn + 21 < A. (1)

FiGURE 1. We use points  where sinz = 0 or 1 as endpoints for the intervals on
which we apply the intermediate value theorem.

We apply the intermediate value theorem to the function

f(z) =sinz — z

A
We have 95
f(2mn) = —— < 0,
and - -
f(277n+g) :1_27mA+§ _ A—2zn—2 -0,
and 2rn+ 7
f@an+m) = g < 0.

hence, by the intermediate value theorem, f(z) = 0 has a solution in (271, 27n + ) and a solution
in (2mn + §,27mn + 7). To determine the number of intervals such that (1) holds, we fix a number
N such that A € 27N, 27N + 27), i.e.

27N < A < 27N + 2. (2)
Then we have (1) forn =0,1,..., N — 1, and so we have found 2N solutions in [0,27N). Since —z

is a solution whenever z is, we have at least 4N — 1 real solutions (avoiding double-counting the
solution x = 0 and ignoring a few possible solutions with |z| > 27 N). Using (2), we have at least

4N—124(§T—1)—1:iA—5

solutions overall. Thus we have the desired lower estimate with a = 2/7 and b = —5.



Section 13.2

PROBLEM. Let f:[2,5) — R be a continuous function such that lim, ,s- = 4. Prove that f is
bounded on [2,5).

SOLUTION. By the boundedness theorem, we know that f is bounded on [2,¢] for any ¢ € (2,5).
We have to choose ¢ in such a way that f is also bounded on (¢, 5).

To do this, use the limit definition. There is § > 0 such that |f(z) — 4| < 1 when 5 —§ < x < 5.
That means 3 < f(z) <5 on (5—6,5).

Thus, by the boundedness theorem, there are numbers by and by such that by < f(x) < by for all
x € [2,5 — 41]. But we also have 3 < f(z) <5 on (5 —4,5). Combining, we have

min(by,3) < f(z) < max(be,5)
for all z € [2,5).

Section 13.3

PROBLEM. Let f: R — R be a continuous function such that
Show that f has a minimum on R.

SOLUTION. By the maximum theorem, for any [a, b] there is ¢ € [a, b] such that f(c) < f(z) for all
x € [a,b]. We need to chose [a,b] in such a ways that f(c) < f(z) for all x outside of [a, b] as well.

To do this, use the limit definition. There is Ny such that x > N implies f(x) > f(0). Similarly,
there is Ny such that f(z) > f(0) when z < Na.

Use No = a and N1 = b. Then, by the maximum theorem, there is ¢ such that f(c) < f(x) for all
x € [a,b]. We also have f(c) < f(0) < f(z) for all z not in [a, b].

PROBLEM. Let f: (0,00) — R be continuous and such that lim, o f(xz) = co. Prove that f is
bounded below on (1,00). Prove that f has a minimum on [2,00). Give an example of f satisfying
the above properties such that f has no minimum on (0, c0).

SOLUTION. By the definition of lim, ,~ f(x) = oo, there is N such that f(z) > 1 when x > N.
By the boundedness theorem, there is b such that f(z) > b when x € [1, N]. Hence z > min(b, 1)
when = > 1 and so f is bounded below on (1, c0).

Similarly, by the definition of lim,_, f(x) = oo, there is M such that f(z) > f(2) when > M.
If 2 > M then we have f(z) > f(2) when x > 2 and we are done. If M > 2, then, by the minimum
theorem, there is ¢ € [2, M] such that f(z) > f(c) for all x € [2, M]. Since f(x) > f(2) > f(c) for
all z > M, it follows that f(z) > f(c) for all z € [2, 00).

An example of f satisfying the above properties with no minimum on (0,00) is f(xz) = z. It has no
minimum on (0, 00) because for every ¢ > 0, we have f(z) < f(c) when z € (0,c¢), so f(c) cannot
be the minimum.



Section 15.1

PROBLEM. Let a be a given real number, and let n > 1 be an integer. Find all real solutions to
2" +a" = (x+a)".

SOLUTION. If @ = 0 this becomes 2" = z™ and all real x are solutions. If n = 1 it becomes
r+a=x -+ a and all real x are solutions.

To analyze other values of a and n, let f(z) = 2" +a" — (z 4+ a)”, and we are solving f(z) = 0. By
Rolle’s theorem, there is a zero of f’ between any two zeroes of f. We have f/(z) = na" ! —n(z +
a)" !, and this is zero if and only if 2" = (z + a)" L.

If n is even and a # 0, then 2"~ ! = (x + a)" ! is equivalent to * = x + a which has no solutions,

so f(x) = 0 has at most one solution. Since f(0) = 0, we see that x = 0 is the only solution to
2"+ a" = (z + a)" then.

If n > 3 is odd and a # 0, then 2" ! = (z 4+ a)"~! has one solution, namely x = —(x + a), or
x = —a/2. That means f(x) = 0 has at most two solutions. We check that f(0) = 0 and f(—a) =0,
so z = 0 and z = —a are the only solutions to 2" + a" = (z + a)" then.

In summary, if a = 0 or n = 1, then all real x are solutions. If a # 0 and n is even, then x = 0 is
the only solution. If a # 0 and n > 3 is odd, then x = 0 and x = —a are the only solutions.

Section 19.4

PrOBLEM. Find numbers a and b such that for all real ¢ we have

1
0<a§/ Y de<b<l
0 2-+sincr

. . 1 1
SOLUTION. From —1 < sincx < 1 we get 1 < 2+ sincx < 3 and hence 3 < TTeincr < 1 and

< z. Since fol Zdr = % and fol zdr = 1 we may take a = 1/6 and b =1/2.

z _x
3 — 2+4sincx



Section 20.4

Let us derive the series

Ool,n 2 1,3
expla) = Y o =l at o 3)
n=0

from exp’(x) = x and exp(0) = 1. Recall that the series on the right converges for all 2 by the
ratio test. Deriving (3) also shows that setting e = exp(1) is consistent with our previous definition

e=3 0 %
From the fundamental theorem of calculus we get

/I exp(t)dt = exp(z) — exp(0) = exp(z) — 1,
and hence ’

exp(z) =1+ /Ol exp(t)dt. (4)

Plugging (4) into itself, i.e. plugging exp(t) =1+ fot exp(t1)dt; into (4), gives

exp(z )_1+/z (1+/texp(t1)dt1)dt

—1+$+/ /exptl )dtidt,

and we have the first two terms of the series (3)

Plugging in (4) again, this time in the form exp(¢;) =1+ fgl exp(to)dts, gives

x t t1
exp(z) =14z +/0 /0 (1 +/0 exp(tg)dtg)dtldt

$2 T t t1
=142+ —+ / / / eXp(tQ)dthtldt.
2 o Jo Jo

Continuing in this manner we obtain, for any n,

t1 tn—1
exp(z) =1+x+- 4+ —i—/ / / / exp(ty)dt,, - - - dtydt.

To conclude, we must show that the remalnders go to zero as n — co. When z > 0, we have

x t t1 tn—1 x t t1 tn—1
‘/ / / / exp(tn)dtn-..dtldt‘ gexp(x)/ / / / dty - dtrdt
0 0 JO 0 0 0 JO 0

xn+1
(n+1)!

= exp()

And when x < 0, we have

x t t1 th—1 x t t1 tn—1
‘/ / / / exp(tn)dtn.--dtldt) g/ / / / dty - dt,dt
0 0 0 0 0 0 0 0

anrl

- (n+1)!
In both cases the right hand side goes to zero as n — oo, because it is the n-th term of a convergent
series.



