
The shortest path problem

These notes will locally solve the shortest path problem on an n dimensional manifold M ⊂ Rm.
More precisely, given a point p in M , we will show that if q is close enough to p then there is a
unique path of shortest length joining p to q. This path is called a geodesic. The presentation
follows parts of sections 3.2 and 6.1 of [Ta]

1. Manifolds

1.1. Definition. We say M ⊂ Rm is a C∞ n-dimensional manifold (or surface) if, for every
p ∈ M there are open sets W ⊂ Rm and U ⊂ Rn and a C∞ function φ : U → W such that p ∈ W ,
U = φ−1(M ∩W ), φ : U → M ∩W is invertible with continuous inverse, and φ′ has full rank (i.e.
is injective) at all points of U . We call M ∩W a coordinate patch, and φ a coordinate chart.

1.2. Examples.

(1) Let f : Rn → R be a C∞ function. Then the graph of M is a C∞ n-dimensional manifold
in Rn+1. The whole manifold is a coordinate patch with coordinate chart φ(x) = (x, f(x)).

(2) Let a > 0, and let M = φ(R), where φ : R → R2 be given by

φ(α) = (a cosα, a sinα).

Then M is a circle. If we take U = I, where I is an interval of length at most 2π, then
φ(U) is a coordinate patch and the restriction of φ to U is a coordinate chart. If the length
of I is greater than 2π, then the restriction of φ is not one-to-one.

(3) The above example works the same way if instead φ : R → R3 is given by

φ(α) = (a cosα, a sinα, 0).

(4) Let a > b > 0, and let M = φ(R2), where φ : R2 → R3 is given by

φ(α, β) = (a cosα, a sinα, 0) + (b cosα cosβ, b sinα cosβ, b sinβ). (1)

Then M is a torus or inner tube as in Figure 3.2.3 of [Ta]. If we take U = I × J , where I
and J are both open intervals of length at most 2π, then φ(U) is a coordinate patch and
the restriction of φ to U is a coordinate chart.

(5) More generally, let (r(β), z(β)) be a parametrized curve (0,∞) × R, with r′ and z′ never
simultaneously zero. Define φ(α, β) = (r(β) cosα, r(β) sinα, z(β)). Then the image of φ is
a 2-manifold in R3 called a surface of revolution.

(6) Another kind of torus is given by M = φ(R2), where φ : R2 → R4 is given by

φ(α, β) = (a cosα, a sinα, b cosβ, b sinβ).

Visualize this as the rectangle [0, a]× [0, b], with opposite edges identified as in an old video
game.

1.3. Exercise. Check that if φ given by equation (1) then φ′(α, β) has full rank for any real α and
β, and more generally check the same thing about an arbitrary surface of revolution.
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1.4. Curves on manifolds. Let γ : [a, b] → M be a C∞ curve. Then its length is given by

L =
∫ b
a |γ′|. To express this in terms of coordinates, we consider [a, b] short enough that γ([a, b]) is

contained in a coordinate patch, and let x(t) = φ−1(γ(t)). Then γ′(t) = φ′(x(t))x′(t), and

|γ′(t)|2 = |φ′(x(t))x′(t)|2 =
(
φ′(x(t))x′(t)

)
·
(
φ′(x(t))x′(t)

)
=

(
G(x(t))x′(t)

)
· x′(t),

where

G(x) = φ′(x)Tφ′(x).

The matrix G(x) is called the metric tensor. Its key properties are that it is symmetric (because
it is the product of a matrix and its transpose), positive definite (because φ′ is injective), and its
entries are C∞ functions of x.

We can also write out the same calculation in terms of components as(
φ′(x(t))x′(t)

)
·
(
φ′(x(t))x′(t)

)
=

m∑
ℓ=1

( n∑
j=1

∂φℓ(x(t))

∂xj
x′j(t)

)( n∑
k=1

∂φℓ(x(t))

∂xk
x′k(t)

)
=

n∑
j,k=1

gjk(x(t))x
′
j(t)x

′
k(t),

where

gjk(x(t)) =
m∑
ℓ=1

∂φℓ(x(t))

∂xj

∂φℓ(x(t))

∂xk
;

in other words, gjk is the dot product of the jth and kth columns of φ′. We abbreviate this further
using the summation convention that repeated indices are summed over, as

|γ′(t)|2 = |φ′(x(t))x′(t)|2 = gjk(x(t))x
′
j(t)x

′
k(t) = gjkx

′
jx

′
k.

Thus the gjk are the entries of the matrix G.

1.5. Example. In Example 1.2 (1), the matrix of φ′ is
(
I
f ′

)
, where I is the n × n identity matrix

and f ′ is the 1× n gradient matrix (∂1f, . . . , ∂nf). Thus G = (φ′)Tφ′ = I + (f ′)T f ′, or

gjk = δjk + ∂jf∂kf,

where δjk = 1 if j = k and δjk = 0 if j ̸= k. In other words the metric tensor in these coordinates
is the sum of the identity matrix and a scaled orthogonal projection onto the gradient of f .

1.6. Exercise. Find gjk for the helicoid1 parametrized by

φ : (0, 1)× R → R3, φ(x1, x2) = (x1 cosx2, x1 sinx2, x2),

and for the sphere parametrized by

φ : R× (0, π) → R3, φ(x1, x2) = (cosx1 sinx2, sinx1 sinx2, cosx2).

1See https://en.wikipedia.org/wiki/Helicoid

https://en.wikipedia.org/wiki/Helicoid
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2. Geoedesics

2.1. Definition of a geodesic. We now define a geodesic in terms of such coordinates. For
1 ≤ j, k ≤ n, let gjk ∈ C∞(Rn) be such that for all x we have gjk(x) = gkj(x) and gjk(x)vjvk > 0
for any nonzero v = (v1, . . . , vn) ∈ Rn, where we use the summation convention that repeated
indices are summed over, i.e. gjkvjvk =

∑n
j=1

∑n
k=1 gjkvjvk. If x = (x1, . . . , xn) : [a, b] → Rn is

a C∞ curve, its speed with respect to g at time t is given by
√
gjk(x(t))x

′
j(t)x

′
k(t), and its length

with respect to g is given by

L = Lg(x) =

∫ b

a

√
gjkx

′
jx

′
kdt. =

∫ b

a

√
gjk(x(t))x

′
j(t)x

′
k(t)dt.

We wish to find the curves which minimize this length. We begin by looking at the simpler energy
functional, which is defined by

E = Eg(x) =
1

2

∫ b

a
gjkx

′
jx

′
k.

To look for a minimizer, we take x(t) = x(t, s) such that x(a, s) and x(b, s) are both independent
of s, and differentiate with respect to s:

∂sE =

∫ b

a

(
gjkx

′
j∂sx

′
k +

1
2∂ℓgjkx

′
jx

′
k∂sx

′
ℓ

)
dt.

Then we integrate by parts in the first term (removing a t derivative from ∂sx
′
k) and swap the k

and ℓ indices in the last term to get

∂sE =

∫ b

a

(
−gjkx

′′
j − ∂ℓgjkx

′
ℓx

′
j +

1
2∂kgjℓx

′
jx

′
ℓ

)
∂sxkdt.

If x0 is a critical point of the energy functional, then ∂sE|s=0 = 0. If this is the case for any
variation xs, then we obtain the system of geodesic equations

−gjkx
′′
j − ∂ℓgjkx

′
ℓx

′
j +

1
2∂kgjℓx

′
jx

′
ℓ = 0, for k = 1, . . . , n. (2)

Any solution to (2) is called a geodesic with respect to G. Solutions are guaranteed to exist by
the existence and uniqueness theorem for ordinary differential equations; more precisely, given any
initial conditions p and v in Rn, for some T > 0 there is a unique C∞ function x : (−T, T ) → Rn

such that (2) holds and x(0) = p and ẋ(0) = v. Moreover, as p and v vary smoothly, so does the
solution. (We will come back to this big theorem)

We will see shortly that geodesics locally minimize length. For now, observe that differentiating
gjkx

′
jx

′
k with respect to t and plugging in (2) shows that all geodesics have constant speed. Note

also that if x(t) is a geodesic, so is x(λt) for any real λ.

2.2. Examples. The simplest example is free space, where gjk ≡ δjk, and the geodesic equations
become x′′ = 0. Thus the geodesics are lines traversed at constant speed; x(t) = p+ vt.

In the torus example, as in equation (1), we have

φ′ =

 − sinα(a+ b cosβ) −b cosα sinβ
cosα(a+ b cosβ) −b sinα sinβ

0 b cosβ

 , G = (φ′)Tφ′ =

(
(a+ b cosβ)2 0

0 b2

)
.

Thus g11 = (a+ b cosβ)2, g12 = g21 = 0, and g22 = b2. The geodesic equations are

−(a+ b cosβ)2α′′ − 2(a+ b cosβ)(−b sinβ)α′β′ = 0,

−b2β′′ + (a+ b cosβ)(−b sinβ)α′α′ = 0.
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The general solutions of this system do not have a simple form, but the linear ones do, namely
either α(t) = a and β(t) = b+ ct, or else α(t) = a+ bt and β(t) = mπ for some integer m.

2.3. Exercises.

(1) Find the geodesic equations for the ellipsoid parametrized by

φ : R× (0, π) → R3, φ(x1, x2) = (a cosx1 sinx2, a sinx1 sinx2, b cosx2),

where a > 0 and b > 0 are given constants. Find all (p, v) for which x(t) = p + vt is a
geodesic.

(2) Let R > 0 be given, and let p and q be two points on a circular cylinder of radius R. Use
the parametrization φ(θ, z) = (R cos θ,R sin θ, z), where φ(0, 0) = p and φ(θ0, z0) = q for
some (θ0, z0) ∈ [−π, π]× R, to find the lengths of all possible geodesics from p to q.

2.4. Meridians on surfaces of revolution. Let M be a surface of revolution, with φ(α, β) =
(r(β) cosα, r(β) sinα, z(β)), and suppose for simplicity that r′(β)2 + z′(β)2 = 1; i.e. meridians of
the surface a parametrized by arclength (this is also known as the unit speed parametrization).
Then, as in the torus example above, we have

G(α, β) =

(
r(β)2 0
0 r′(β)2 + z′(β)2

)
=

(
r(β)2 0
0 1

)
,

and the meridians are geodesics, in the sense that any parametrized curve with α(t) constant and
with β(t) = b+ ct is a geodesic. Let’s check that these minimize length.

To that, let p and q be two points on the same meridian, i.e. they are given by p = (α0, β0)
and q = (α0, β1). Let (α(t), β(t)) be a curve joining them, i.e. it obeys α(a) = α0, α(b) = α(0),
β(a) = β0, β(b) = β1. Then its length obeys

L =

∫ b

a
|γ′(t)|dt =

∫ b

a

√
r(β)2α′(t)2 + β′(t)2dt ≥

∫ b

a
|β′(t)|dt ≥

∣∣∣ ∫ b

a
β′(t)dt

∣∣∣ = |β(b)− β(a)|.

Note that both inequalities become equalities if the curve is a geodesic, i.e. if α(t) constant and
β(t) = b + ct. Moreover, these are the unique minimizers up to reparametrization, because if α is
not constant then the first inequality is strict. Thus we conclude that meridians are solutions to
the least path problem on surfaces of revolution. Also note that |β(b)− β(a)| is a nice formula for
the length of the path from p to q.

Of course the above only works if p and q are on the same meridian. But if M is a sphere then
this covers the general case, because we can always choose our coordinates so that p and q lie on
the same meridian. (The only exception is if p and q are antipodal, but in that case we know the
least path problem has no unique solution.)

2.5. Normal coordinates. The above discussion of spheres showcases the simplifying power of
well-chosen coordinates. To prove that geodesics locally minimize length on a more general man-
ifold, we introduce normal coordinates near 0; these are coordinates which give the metric the
simplest possible form near 0. We define them in two steps.

We first use the fact that G(0) is positive definite and the spectral theorem to get a basis of
eigenvectors of G(0), which are orthonormal with respect to G(0), i.e.[

G(0)uk

]
· uℓ = δkℓ,

and let A be a matrix whose columns are the uj . For example, if G(0) = ((0, 3), (3, 0)), then we

can use u1 = (1, 1)/3
√
2 and u2 = (1,−1)/3

√
2 and A = ((1, 1), (1,−1))/3

√
2. Then put

x = Ax̃,
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so that [
G(x(t))x′(t)

]
· x′(t) =

[
G̃(x̃(t))x̃′(t)

]
· x̃′(t)

where

G̃(x̃) = ATG(Ax̃)A.

That makes G̃(0) = I, or

g̃ij(0) = δij . (3)

Second, let Exp(v) = γv(1), where x̃(t) = γv(t) is the geodesic such that γv(0) = 0 and γ′v(0) = v.
This may not be defined for all v (because the geodesic equation may not be solvable up to t = 1
for all v), but the existence, uniqueness, and regularity theorem for ordinary differential equations
guarantees that Exp(v) is defined for v small enough and that Exp: B(c) → Rn is a C∞ map for
some c > 0, where B(c) is the open ball centered at 0 with radius c. The derivative of Exp at 0 is
the identity, because

Exp(λv) = γλv(1) = γv(λ) = γv(0) + λγ′v(0) + r(λ, v) = λv + r(λ, v),

where |r(λ, v)|/λ → 0 as λ → 0. Hence, by the inverse function theorem, after possibly shrinking
c, the map Exp: B(c) → Exp(B(c)) is invertible with C∞ inverse.

In these coordinates we write

x̃ = Exp(y)

and as before [
G(x(t))x′(t)

]
· x′(t) =

[
G̃(x̃(t))x̃′(t)

]
· x̃′(t) =

[
H(y(t))y′(t)

]
· y′(t).

In these coordinates, if y(t) is a geodesic and y(0) = 0, y′(0) = v, then y(t) = tv since Exp(tv) =
γtv(1) = γv(t). Further, since geodesics have constant speed, we have[

H(y(t))y′(t)
]
· y′(t) =

[
H(y(0))y′(0)

]
· y′(0) =

[
H(0)v

]
· v = |v|2, (4)

where for the last equals we used

H(0) = (Exp′(0))T G̃(0) Exp′(0) = I.

Thus we know h on radial vectors. The Gauss Lemma says that radial vectors are h-perpendicular
to those vectors to which they are Euclidean-perpendicular; i.e.

v · w = 0 =⇒
[
H(v)v

]
· w = hjk(v)vjwk = 0. (5)

We will prove the Gauss lemma momentarily. To see how it is used, let y(t) be any path in B(c)\0,
and let r(t) = |y(t)|. Then y(t) = r(t)ω(t), where ω(t) = y(t)/|y(t)|, and[

H(y(t))y′(t)
]
· y′(t) =

[
Hy′

]
· y′ = r′2

[
Hω

]
· ω + r2

[
Hω′

]
· ω′ = r′2 + r2

[
Hω′

]
· ω′ ≥ r′2.

where for the second equality we used the fact that (5) implies [Hω] · ω′ = 0, for the third equality
we used (4), and the inequality is strict if and only if ω′ ̸= 0 because H is positive definite.

Now let p ∈ B(c), let y : [a, b] → B(c) be any smooth path with y(a) = 0 and y(b) = p. The
length is ∫ b

a

√[
H(y(t))y′(t)

]
· y′(t)dt ≥

∫ b

a
|r′| ≥

∫ b

a
r′ = r(b)− r(a) = |p|,

with equality if and only if ω is constant and r is monotonic, i.e. if and only if y(t) monotonically
parametrizes the line segment from 0 to p. Thus a parametric curve γ from 0 to p always has
length ≥ the length of the geodesic curve from 0 to p, and the lengths are equal if and only γ
monotonically parametrizes the geodesic curve.
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It remains to prove the Gauss Lemma. Without loss of generality, |v| = |w| = 1. Then put

y(t) = y(t, s) = (v cos s+ w sin s)t E(y(t)) =
1

2

∫ 1

0
hjk(y(t))y

′
j(t)y

′
k(t)dt,

Then, as before, we get

∂sE =

∫ 1

0

(
hjky

′
j∂sy

′
k +

1
2∂ℓhjky

′
jy

′
k∂syℓ

)
dt,

and integrating by parts, and swapping the k and ℓ indices in the last term gives

∂sE = hjk(y(1))y
′
j(1)∂syk(1) +

∫ 1

0

(
−hjky

′′
j − ∂ℓhjky

′
ℓy

′
j +

1
2∂khjℓy

′
jy

′
ℓ

)
∂sykdt.

Combining this with ∂sE = 0 (because y has unit speed for every s) and observing that the
integrand vanishes because y solves the geodesic equation, and plugging in s = 0, gives (5).
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