
The fundamental theorem of differential equations

Let f : Rn → Rn be continuous, let p ∈ Rn, and consider the initial value problem

x′(t) = f(x(t)), x(0) = p. (1)

More general initial value problems for ordinary differential equations can be reduced to this one by
a change of variables. For example, solving y′′ + g(y) = 0 with y(0) = a and y′(0) = b is equivalent
to solving (1) with f(x1, x2) = (x2,−g(x1)), p = (a, b), by the substitution x(t) = (y(t), y′(t)). The
following exercise generalizes this.

Exercise 1. Given a continuous F : Rm×Rm×R → Rm×Rm×R, and (y0, y1, r0) ∈ Rm×Rm×R,
find f and p such that x(t) = (y′(t+ r0), y(t+ r0), t+ r0) solves (1) if and only if

y′′(r) = F (y′(r), y(r), r), y(r0) = y0, y′(r0) = y1.

We solve (1) by converting to an integral equation. Let T > 0 be given. If a differentiable function
x : (−T, T ) → Rn solves (1), then it solves the integral equation

x(t) = p+

∫ t

0
f(x(s))ds. (2)

Conversely, any solution to (2) is continuous (because t 7→
∫ t
0 g is continuous for any g) and hence

also differentiable (by the fundamental theorem of calculus) and also solves (1).

Theorem 1. Let f : Rn → Rn be C1 near some p ∈ Rn. There is T > 0 such that there is a unique
solution x : [−T, T ] → Rn to

x(t) = p+

∫ t

0
f(x(s))ds. (3)

To solve (1), we use the notation Br(p) = {x ∈ Rn | |x− p| < r}. Recall that if f : Br(p) → Rn is
C1 with ∥f ′∥ ≤ L for some constant L, then

|f(x)− f(y)| ≤ L|x− y|, (4)

for all x and y in Br(p). Inequality (4) is called a Lipschitz condition and it can be proved by
setting c(t) = tx+ (1− t)y and writing

|f(x)− f(y)| =
∣∣∣ ∫ 1

0

d

dt
f(c(t))dt

∣∣∣ = ∣∣∣ ∫ 1

0
f ′(c(t))(x− y)dt

∣∣∣ ≤ ∫ 1

0
∥f ′(c(t))∥|x− y|dt ≤ L|x− y|.

Proof of Theorem 1. Define a recursive sequence, called a sequence of Picard iterates,

x0(t) ≡ p, xk+1(t) = p+

∫ t

0
f(xk(s))ds. (5)
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Take positive numbers δ, A, and L such that |f | ≤ A and ∥f ′∥ ≤ L on Bδ(ξ). We require T ≤ δ/2A
so that

|x1(t)− x0(t)| ≤
∫ t

0
|f(p)|ds ≤ TA ≤ δ/2.

We next require T ≤ 1/2L so that, by (4),

|x2(t)− x1(t)| ≤
∫ t

0
|f(x1(s))− f(x0(s))|ds ≤ TL max

s∈[−T,T ]
|x1(s)− x0(s)| ≤ δ/4,

and, more generally,

|xk+1(t)− xk(t)| ≤
∫ t

0
|f(xk(s))− f(xk−1(s))|ds ≤ max

s∈[−T,T ]
|xk(s)− xk−1(s)|/2 ≤ · · · ≤ δ2−k−1.

Thus, for m > k,

|xm(t)− xk(t)| ≤
m−1∑
j=k

|xj+1(t)− xj(t)| ≤ δ
m−1∑
j=k

2−j ,

which tends to 0 as k → ∞, so xk converges uniformly. Let x(t) = limk→∞ xk(t). Since

|f(x(s))− f(xk(s))| ≤ L|x(s)− xk(s)|,

we can take the limit as k → ∞ of (5) to get (3).

For uniqueness, see the exercise below. □

Exercise 2. Prove that if x : [−T, T ] → Rn and x̃ : [−T, T ] → Rn both solve (3), and |f(x(t))−
f(x̃(t))| ≤ L|x(t)− x̃(t)| for all t ∈ [−T, T ], and if TL ≤ 1/2, then x(t) = x̃(t) for all t ∈ [−T, T ].

The above proof gives us more, namely the following stronger but more complicated result.

Theorem 2. Let f : Rn → Rn be C1 near some q ∈ Rn. Suppose there are positive numbers δ, A,
and L such that |f | ≤ A and ∥f ′∥ ≤ L on B2δ(q). Then, for any T > 0 such that T ≤ δ/2A and
T ≤ 1/2L, there is a unique solution x : [−T, T ]×Bδ(q) → Rn to

x(t, p) = p+

∫ t

0
f(x(s, p))ds. (6)

Moreover the Picard iterates

x0(t, p) ≡ p, xk+1(t, p) = p+

∫ t

0
f(xk(s, p))ds, (7)

converge uniformly to it.

The uniform convergence tells us that x is continuous in p; this is called continuous dependence on
the initial condition. Thus, for every ε > 0 there is δ > 0 such if we that know the initial condition
p up to accuracy δ then we know x(t) up to accuracy ε for all t ∈ [−T, T ]. If f has additional
smoothness, then so does x, allowing us to relate ε and δ:

Theorem 3. Let f : Rn → Rn be C2 near some q ∈ Rn. There there are positive numbers δ and T
such that there is a unique solution x : [−T, T ]×Bδ(q) → Rn to (6) and this solution is C1.
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Proof. We have already shown that there is a unique solution if r and T are small enough, and ∂tx
is continuous by (6). To show that ∂pjx is continuous for any j, observe that differentiating (7)
gives

∂pjx0(t, p) = ej , ∂pjxk+1(t, p) = ej +

∫ t

0
f ′(xk(s, p))∂pjxk(s, p)ds,

where ej is the unit vector in the jth coordinate direction. Accordingly define

y0(t, p) = ej , yk+1(t, p) = ej +

∫ t

0
f ′(xk(s, p))yk(s, p)ds.

Thus yk = ∂pjxk. It is enough to show that yk converges uniformly; then we will have

lim
k→∞

yk = lim
k→∞

∂pjxk = ∂pj lim
k→∞

xk = ∂pjx.

Put zk = (xk, yk). Then

z0(t, p) = Z, zk+1(t, p) = Z +

∫ t

0
g(zk(s, p))ds, (8)

with ζ = (p, ej) and g(a, b) = (f(a), f ′(a)b). We now apply Theorem 2 with f replaced by g, and
with p replaced by (p, ej), to conclude that zk converges uniformly, and so in particular yk does. □

Iterating the above, we see that if f is CK+1, then in (8) g is CK , so that ∂pjx is CK−1, and x is

CK . In particular, if f is C∞, then so is x.

Example. Let f(x) = Ax. Then

x0(t) = p,

x1(t) = p+

∫ t

0
Apds = (1 +At)p,

x2(t) = p+

∫ t

0
(1 +As)pds = (1 +At+ 1

2At
2)p,

· · ·

xk(t) =

n∑
k=0

(At)k

k!
p,

yk(t) =

n∑
k=0

(At)k

k!
ej ,

zk(t) =
( n∑

k=0

(At)k

k!
p,

n∑
k=0

(At)k

k!
ej

)
, g(a, b) = (Aa,Ab).


