The fundamental theorem of differential equations

Let f: R™ — R”™ be continuous, let p € R", and consider the initial value problem

o'(t) = f(z(t),  2(0)=p. (1)
More general initial value problems for ordinary differential equations can be reduced to this one by
a change of variables. For example, solving 3" + ¢g(y) = 0 with y(0) = a and 3/(0) = b is equivalent
to solving (1) with f(z1,22) = (22, —g(x1)), p = (a,b), by the substitution z(t) = (y(t),y'(t)). The
following exercise generalizes this.

Exercise 1. Given a continuous F': R™ xR xR — R™xR™ xR, and (yo, y1,70) € R™xR"™ xR,
find f and p such that z(t) = (y'(t +79), y(t + ro),t + 70) solves (1) if and only if

y'(r) = F(y'(r),y(r),r),  ylro) =wo, ¥'(ro) =1

We solve (1) by converting to an integral equation. Let T' > 0 be given. If a differentiable function
x: (=T, T) — R™ solves (1), then it solves the integral equation

—p+t /0 f(a(s))ds. ()

Conversely, any solution to (2) is continuous (because t — fot g is continuous for any ¢) and hence
also differentiable (by the fundamental theorem of calculus) and also solves (1).

Theorem 1. Let f: R® — R" be C' near some p € R™. There is T > 0 such that there is a unique
solution z: [-T,T] — R" to

t
—p+t /O f(x(s))ds. (3)

To solve (1), we use the notation B,(p) = {x € R" | |z — p| < r}. Recall that if f: B,(p) — R" is
C* with ||f’|| < L for some constant L, then

[f(x) = f(y)l < Llz =yl (4)

for all x and y in B,(p). Inequality (4) is called a Lipschitz condition and it can be proved by
setting ¢(t) =tz + (1 — t)y and writing

)= s =| [ atana] = | [ e v < [ 17w~ v < 2 - )

Proof of Theorem 1. Define a recursive sequence, called a sequence of Picard iterates,
t
zo(t) = p, Tpe1(t) = p+/ f(zk(s))ds. (5)
0
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Take positive numbers d, A, and L such that |f| < A and || f/|| < L on Bs(§). We require T' < §/2A
so that

[21(8) — w0(t)] < /0 £(p)lds < TA < 6/2.

We next require 7' < 1/2L so that, by (4),
|22(t) — 21 (8)] < /Ot [F(z1()) = flao(s))lds < TL max [or(s) —2o(s)| < /4,
and, more generally,
ona(t) = an(t) < [ () — Pl (s))lds < e fau(s) o (9)/2 - < 0274,

Thus, for m > k,

m—1
jem(t) = 2x(t)] < D lajn(t) —a(t) <6277,
J Jj=k
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which tends to 0 as k — o0, so xj, converges uniformly. Let x(¢) = limg_,o, 2% (). Since

[f(x(s)) = f(an(s))| < Llz(s) — 2x(s)],
we can take the limit as k — oo of (5) to get (3).

For uniqueness, see the exercise below. ]

Exercise 2. Prove that if z: [-T,T] — R™ and Z: [T, T] — R" both solve (3), and |f(z(t)) —
f(@(t)] < Llz(t)—2(t)| for all t € [-T,T), and if TL < 1/2, then z(t) = Z(t) for all t € [T, T].
The above proof gives us more, namely the following stronger but more complicated result.

Theorem 2. Let f: R® — R™ be C' near some q € R™. Suppose there are positive numbers §, A,
and L such that |f| < A and ||f'|| < L on Bas(q). Then, for any T > 0 such that T < 6/2A and
T < 1/2L, there is a unique solution x: [—T,T] X Bs(q) — R™ to

£(t.p) = p+ /0 f(x(s.p))ds. (6)

Moreover the Picard iterates

w(tp)=p st =p+ /0 F(@r(s, p))ds, (7)

converge uniformly to it.

The uniform convergence tells us that x is continuous in p; this is called continuous dependence on
the initial condition. Thus, for every € > 0 there is § > 0 such if we that know the initial condition
p up to accuracy ¢ then we know z(t) up to accuracy € for all ¢t € [—-T,T]. If f has additional
smoothness, then so does x, allowing us to relate ¢ and §:

Theorem 3. Let f: R® — R” be C? near some g € R™. There there are positive numbers § and T
such that there is a unique solution x: [~T,T] x Bs(q) — R™ to (6) and this solution is C'.
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Proof. We have already shown that there is a unique solution if r and T are small enough, and 0;x
is continuous by (6). To show that d,. x is continuous for any j, observe that differentiating (7)
gives

t
Op;wo(t,p) = e, Op; Try1(t,p) = € +/ f’(wk(s,p))apjxk(s,p)ds,
0

where e; is the unit vector in the jth coordinate direction. Accordingly define

t
yO(t7p) = €5, yk+1(t7p) =€ +/ f’(mk(s,p))yk(s,p)ds.
0
Thus yp = Op;zx. It is enough to show that yx converges uniformly; then we will have

lim = lim 0, .xr = 0,. lim x = 0,.x.
k%ooyk k—o00 Pk b k—o0 k P

Put zx = (zk, yx). Then

¢
wltn) =2 an(tn) =2+ [ glalsp)is Q
0
with ¢ = (p,e;) and g(a,b) = (f(a), f'(a)b). We now apply Theorem 2 with f replaced by g, and

with p replaced by (p, e;), to conclude that z;, converges uniformly, and so in particular y;, does. [

Iterating the above, we see that if f is CK*1, then in (8) ¢ is CX, so that Op, T is CK-1 and z is
CK. In particular, if f is C*, then so is .

Example. Let f(z) = Az. Then
Lo (t) =D

t
z1(t) = p+/ Apds = (1 + At)p,
0

t
zo(t) =p +/ (1+ As)pds = (1 + At + L At?)p,
0

prd k!
n k
w(t) =3 Yile,
k=0
n k n k
a0 = (29 W) gab) = (4a, a8,



