MA 504 final exam review problems Version as of December 6th.

The final will be on Tuesday, December 13th, from 8 to 10 am in UNIV 101. Most of the exam will be closely based on problems, or on parts of problems, from the list below. Please let me know if you have a question or find a mistake.

- 1. Let $f \colon \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $|f(x) f(y)| \ge |x y|$ for all $x, y \in \mathbb{R}$. Prove that f is surjective.
- 2. For each of the following functions, determine the pointwise limit f(x) on the indicated interval, and decide whether the convergence is uniform. If the convergence is uniform, find a sequence of real numbers $B_n \to 0$ such that $|f_n(x) - f(x)| \le B_n$ for all x in the interval. If it isn't, find $\varepsilon > 0$ and a sequence x_n such that $|f_n(x_n) - f(x_n)| \ge \varepsilon$ for all n.
 - (a) $f_n(x) = n^{-1} \sin x$ on \mathbb{R} .
 - (b) $f_n(x) = e^{nx}$ on $(-\infty, -1)$.
 - (c) $f_n(x) = e^{-nx^2}$ on [-10, 10].
 - (d) $f_n(x) = nx/(1+n+x)$ on [0, 10].
 - (e) $f_n(x) = nx/(1+n+x)$ on $[0,\infty)$.
- Let f: [a, b] → [c, d] be continuously differentiable and such that f and f' are both monotonic. Give an upper bound, as small as you can, on the arclength of the graph of f in terms of a, b, c, and d.

Hint: Prove that $\sqrt{\alpha + \beta} \leq \sqrt{\alpha} + \sqrt{\beta}$ for suitable α and β and use the integral formula for arclength.

4. Is the sequence of functions $f_n \colon \mathbb{R} \to \mathbb{R}$ defined by

$$f_n(x) = \sin(n+x) + \frac{1}{1 + \frac{1}{\sqrt{n+1}}\cos^2(n!x)}$$

equicontinuous?

5. Let K be a compact metric space, and let $\{f_1, f_2, ...\}$ be a uniformly bounded equicontinuous family of functions $K \to \mathbb{C}$. For every positive integer n and $x \in K$, let

$$g_n(x) = \max\{|f_1(x)|, \dots, |f_n(x)|\}.$$

Prove that the sequence g_1, g_2, \ldots converges uniformly on K.

6. Find a real number $\alpha > 0$, as large as possible, such that for any $a, b \in \mathbb{R}$ with a < b and any twice differentiable $f \colon \mathbb{R} \to \mathbb{R}$ satisfying f'(a) = f'(b) = 0, there is a point $c \in [a, b]$ such that

$$|f''(c)| \ge \alpha \frac{f(b) - f(a)}{(b-a)^2}$$

(Incidentally, this means that if a particle covers distance d in time t, starting and ending at rest, then at some point its acceleration must be at least $\alpha d/t^2$.)

Hint: Use Theorem 5.15 on the intervals $[a, \frac{a+b}{2}]$ and $[\frac{a+b}{2}, b]$ and subtract the resulting equations.

- Exercises 11.7.4-11.7.8 from https://www.jirka.org/ra/html/sec_stoneweier.html. (These are numerous but repetitive).
- 8. Let k be a positive integer, and let $K \subset \mathbb{R}^k$ be compact, and let $\alpha > 0$ be given. Let C(K) be the metric space of all continuous functions $K \to \mathbb{C}$, with the distance between two functions $f_1, f_2 \in C(K)$ defined to be $\max_{p \in K} |f_1(p) f_2(p)|$. Let A be the set of all functions $g: K \to \mathbb{C}$ for which there is a constant C such that $|g(p) g(q)| \leq C|p q|^{\alpha}$ for any p and q in K. Prove that A is dense in C(K) if $\alpha \leq 1$, or if K contains only finitely many points, but not if $\alpha > 1$ and k = 1 and K contains an interval.
- 9. Let X be a metric space, let $F \subset X$ be a finite set, and let $E \subset X$ be a countable set. Suppose every sequence in E has a subsequence converging to a point in F. Prove that the closure of E is compact.