Kiril Datchev MA 504 Fall 2022

Homework 4

Due October 7th on paper at the beginning of class. Please let me know if you have a question or find a mistake.

1. (a) Prove that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by continuing the following pattern:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4},$$

$$1 + \frac{1}{2} + \dots + \frac{1}{8} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}.$$

- (b) Use the result of part (a) to to find an unbounded increasing sequence a_1, a_2, \ldots such that $\sum_{n=1}^{2^k} \frac{1}{n} \ge a_k$ for all positive integers k.
- 2. (a) Prove that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by proving that if n > 1 then

$$\frac{1}{n^2} < \frac{1}{n(n-1)},$$

and using partial fraction decomposition to simplify the partial sums of $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$.

(b) What upper bound on the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is implied by the calculation of (a)?

Note: See also Theorems 3.27 and 3.28 of Rudin for more insight into the above two problems, but don't invoke them here.

3. Let a_1, a_2, \ldots be a sequence of positive numbers which tends to zero but such that $\sum_{n=1}^{\infty} a_n$ diverges. Let A_1, A_2, \ldots be the sequence of partial sums

$$A_n = \sum_{k=1}^n a_k,$$

and let $b_1 = \sqrt{A_1}$, $b_{n+1} = \sqrt{A_{n+1}} - \sqrt{A_n}$ for $n \ge 1$. Show that

$$\lim_{n \to \infty} \frac{b_n}{a_n} = 0,$$

but that $\sum_{n=1}^{\infty} b_n$ is still divergent. In this sense there is no 'smallest' divergent series, and one can similarly show that there is no 'largest' convergent one.

Hint: Show that if α and β are positive, then $\sqrt{\alpha} - \sqrt{\beta} = \frac{\alpha - \beta}{\sqrt{\alpha} + \sqrt{\beta}}$.

4. Let s_1, s_2, \ldots be a bounded sequence of real numbers, and define s^* as in Rudin's Definition 3.16. Let $b_n = \sup\{s_n, s_{n+1}, \ldots\}$, and let $\alpha = \lim_{n \to \infty} b_n$. Prove that $s^* = \alpha$. Do not use

lim sup notation in this problem since this amounts to showing that the definition of lim sup we used in class agrees with the definition in the book.

Hint: With *E* as in Rudin's Definition 3.16, show that α is an upper bound for *E* directly from the definition. Next show that if $\beta < \alpha$, then β is not an upper bound for *E*, by showing that there are infinitely many s_n obeying $\frac{\alpha+\beta}{2} \leq s_n$.