Kiril Datchev MA 504 Fall 2022

Homework 5

Due October 14th on paper at the beginning of class. Please let me know if you have a question or find a mistake.

There are some hints on the second page.

- 1. Let X be a complete metric space, let $\lambda \in [0, 1)$, and let $f: X \to X$ obey $d(f(x), f(y)) \leq \lambda d(x, y)$ for all $x, y \in X$. Prove that there is a unique $x \in X$ such that f(x) = x. (One says 'a contraction on a complete metric space has a unique fixed point').
- 2. Let X be a compact metric space and let $f: X \to X$ obey d(f(x), f(y)) < d(x, y) for all $x, y \in X$ such that $x \neq y$. Prove that there is a unique $x \in X$ such that f(x) = x.
- 3. Let X = [0,1] with d(x,y) = |x y| and $f: X \to X$ be given by $f(x) = x x^2$. Prove that the assumptions of Problem 2 are satisfied but not the assumptions of Problem 1.
- 4. Let $f: [0,\infty) \to \mathbb{R}$ be a continuous function such that f(x) > 0 for all $x \ge 0$ and such that

$$\lim_{x \to \infty} f(x) = 0.$$

- (a) Prove that f is bounded on $[0, \infty)$.
- (b) Prove that f has a maximum on $[0, \infty)$.
- (c) Prove that f has no minimum on $[0, \infty)$.
- (d) Prove that f is uniformly continuous.

Hints:

- 1. Prove that, for any $x_0 \in X$, the sequence given by $x_{n+1} = f(x_n)$ for all $n \in \{1, 2, ...\}$ is Cauchy.
- 2. Prove that the function $x \mapsto d(x, f(x))$ is continuous and has a minimum value of zero.
- 3. Observe that d(f(x), f(y))/d(x, y) simplifies nicely.
- 4. (a) Consider separately the intervals [0, N] and (N, ∞) , where N is a strategically chosen large number.
 - (b) Use the same approach as in part (a), but explain how to choose N in such a way that the maximum is attained on [0, N].
 - (c) For any $a \ge 0$, prove that there is x such that f(x) < f(a).