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4.1 DOUBLE INTEGRALS

The main theorems about integrating functions of two variables are
important and conceptually clear, but difficult to formulate and prove.

In fact, the first really good theory was not developed until recently, by
Henri Lebesgue (1902) and Guido Fubini (1910), to mention two of the
most famous names. We will begin with the general ideas, and make only

a few steps toward formulating and proving the theorems.
Suppose f is a function defined in a set S of the plane, and f > 0 on S.

Then the double integral f[sf means, intuitively, the volume of the region
lying over S and under the graph of f.

Exzample 1. S is the unit disk { P: |P| < 1}, and f(z,y) = AV1—a?— 2.
The region lying over S and under the graph of f is the upper half of the unit
ball { (z,y,2): 2% + y* + 22 < 1}; hence

f[1=% @me =3
(See Fig. 1.)

Ezample 2. S is the square { (z,y): 0 <2<1,0<y< 1}, and f(my) = .
The region lying over S and under the graph of f is a wedge, a unit cube sliced

in half, so [[sf =3%. (See Fig. 2.)
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Ficure 4.3

When f takes negati i
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Now consider a function f > 0 defined on a rectangle
S={@y:a<z<bely<dl

in Fig. 5. Let A (x) denote the area of a
erpendicular to the @ axis at (2,0,0). By
the volume [ [sf should be

then [[sf is the volume shown
typical cross section by a plane p
analogy with volumes of revolution,

f= b A () dz. (1)
S a
12

A(z) = area of cross section = f df(ac,y) dy
2 = f(zy), «fixed

FIGURE 4.5

Further, for any fixed z, the cross-sectional area A (x) is the area under
the graph of a function of one variable, g(y) = f (z,y), s0

d
Aw) = [ S dy. @

Putting (2) into (1), we get

[[1= 1] 0 a)as A

ation of [[sf to the evaluation of two ordi

~

This formula reduces the evalu
nary integrals, a question we have already studied.

S={@y):0<2<1,1<y< 2
fly) = ze”

f /S = /01 Ujm dy] dz = fo 1 [eﬂ']‘;:i d

1
=/ (¢ — ¢*) de = [l — ey =3¢ — e+ 1.
0

Example 8.
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The same method can be i
. applied when S i
two functions ¢;(x) and ¢y(z) on an interval E(sz ]Zél)unded b the graphs of

§= @0 <o <b @ <y < ), @

where we assume that ¢; < i
: hat ¢1 < ¢; on the interval [a,b]. A in Fi
a typical cross section perpendicular to the 2 a)[(:is, h:.ims ar:a,Shown e

e2(x)

o1(x)
so the total volume is

//:Sf= /abA(x) dz = _/;b [-/:::)f(x,y) dy]. (5)

Area of cross section = / s
= x
ei(x) f( ’y) dy

2 =f(xy), v fixed
o) <y < o)

#

y varies from |
@1(2) to o,(x) (=,01(2))

Graph of ¢,

FIgure 4.6 ‘
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strated in Fig. 1 we have and

Example 4. For the double integral illu
@y):—1<2e<1, —vV1— 2<y< A/1—a? (the unit disk)

fay) = VI—a =4
‘/:/‘;f=fl[ = mdy]dz

—1 —V1—z?

S =

a ar )
d
= N f(zy) du | dy. (7)
In both (5) and (7) there i i
e is an “inner integral’’ i

o I _ gral” (the one
aflzct }(le;os) :nd_ an “outer integral”; the inner integral has variabllrela ?fluire

outer integral has constant limits. When the inner integral is1 I\I:t?

i

| fl [1 . . y N 1 ym]wﬂ—z* i respect to x (as in (7)), its limits d
o aresin ——— T 5 e : | .
i il e pr it c(,) : mits depend on y, and in the evaluation of
LJSa B e y constant. When the inner integral is with respect
» 1ts limits depend on z, and in [ f(x,y) dy we keep z constant

Brample 5. 8 = {(zy):0<y<2%0< 2 < 2} (see Fig. 8(a))
f(x;y) =x+y.

1 T vl SR
= — — = — —_— = —@
2(1 a?) dx z[x 311 s

—1

a? 1
Vi — Pdy = —iarcsing-l- iy\/tﬁ— y2.)
a

(Here we used the integral f

de only to simplify the picture; the same
nof f. And, of course, we could just as

the y axis (Fig. 7):if

The restriction f > 0 was ma
method works, regardless of the sig
well take sections perpendicular to

S = {(zy):va(y) <z <), ey < d}, (6)

where Y1 < ¥ on the interval [c,d], then a typical cross section has area
Yaw)
A = [ i)

Y1(y)

o
Sketch of the base of
the figure to the left

z
7/

@=x 4y, uxfixed

a(y)
Area of cross section = / fx,y) d
)
0 <y <a

z =)

(0,d)

(‘I’l(y): Y, 0)
|z = ()

0 :
CCONDL ¢ ), ) 5
. 0 |
00 (2:4,0)

Z(y), y,0)

2= f(f'?:y): Yy fixed
W) <z <)

2 varies from ¥1(¥) to Ya(y)

Figure 4.8 (a)

Ficure 4.7
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with o1 = 0 and gy = 2% so we have, as In We have written the “repeated integral”’

f b [ m(x)f (z,y) dy] dz

a o1(z)

The set S is given in the form 4),

6), 2 ly==?
o= L1 wroafe 15l
s o LYo
=j;2[x3+z:]dx=[?£+%]z=§5§'

cribed in the form (6),

with square brackets to show clearly how it is to be evaluated; first take

v2(2)
| iy ay,

o1(z)

The same set can also be des Fig. 8(b)) 3 a.nd Ithen integrate the result with respect to z. Usually it i s
- s wily £ L BNLYS 4} (see Fig. o simply

S={@y: Vy<es2,039= E 1 o is i

/ / f(z,y) dy dz,

a Y o1(z)

SO =2

f_/;f=_/:[/; (x+y)dx]dy=‘/:[§+xy]x=ﬁdy
=f(2+2y‘%—?f”‘)dy

0

. y2 % /24-_:?9,
=[2y+y2—z—5?fi 5

with the understanding that the “inner integral’’ is to be evaluated first.

This whole discussion has been based on an analogy and a few pictures.
Two important theorems give these pictures the necessary rigorous basis.

Theorem 1. Let f be continuous on the set

S={@y:a<z<b el <y e, (4)
where ¢1 and ¢s are continuous on [a, b] and o1 < 5. Let

¢2(z)
¢ = [ j@y) dy.

o1(2)

Then G is continuous on [a,b]. /

Smilarly, if S is the set ¢
S={(@y):hy) <2<y, cLy L dj, (6)
where Y1 and Y, are continuous and Y1 < Yo, then

V2(v)
Hy) = [ j@y) da

v1(y)
1s conttnuous on [c,d].

Theorem 2. If the same set S is described both by (4) and by (6), then
b P2(x) a Va2 (v)
[\ sewa)a= [ sene]a  ©

a e1(x) c Y1(y) o

Tigure 4.8 (b)
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If these theorems could be proved intelligibly in a page or two, we
would do it, but in fact they are by-products of a thorough investigation
of double integration, as well as the deeper properties of continuous func-
tions of two variables. Rather than give “ad hoc” direct proofs of such
special results, we refer you to the general theory as expounded in the

references listed at the end of this section.

The common value of the two integrals in (8) is called the double in-

tegral of f over S, denoted

f/:sf or f/sf(x,y) dz dy.

Since we are defining the double integral by (8), the linearity property

f_/:g (of + B9) = “/_/:gf + Bf/g (a and B are constants)

follows from the linearity of the single integral (Problem 7). Similarly,

j<g = f/stffsg.

Theorems 1 and 2 have an important corollary,
differentiating under the integral sign:

Theorem 3. Suppose D1 f(t,y) is continuous on the rectangle
R={y:a<t<bec<y<dl
Then the function

d
¢ = [ 1) dy

has the dertvative

¢ = [ Duftew) dy

Proof. Consider f(t,y) as a function of ¢, with y held fixed. By th

fundamental theorem of calculus

jtw) = fay) + [ Diftay) doi

Leibniz’ rule for
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hence

o) = [ " e d - [ o)y + [ [ [ it dx] dy

- /cdf(a,?/) dy + /: [/;d D: f(z,y) dy] dz,

by Theorem 2. The first i
N : term in th ine i - g
tive 1s zero. The second term is © last line is constant, so its deriva-

/a H(x) do, where H(z) = /d D f(a,y) dy.

o ) u )

’, d
') = HQ) = [ Dif(y) dy. Q.E.D.

Perhaps it is fitting to write Leibniz’ rule in Leibniz notation:

d aof
olz:/c J(ty) dy = / 5 (bY) dy.

Th . a5

theu:{lzlsrilger ?pprqprlate CO.ndlthIlS, the derivative d/dt can be moved fr

oo e of the 1r}tegr§1 sign to the inside. (But once inside, it has toolr)n
n as d/dt, since it now applies to a function of two Var’iables ) II(:

this guise, it is eas
, y to see how th
for the variables; for example, PRIS TR TGN Gt letams e e

d rt : b
a/a f(,8) ds = /; a%]-" (x,8) ds,

d B b af ‘
dt/a 1) de / Y (t,x) de.

a

rther, since s is held constant in computing f(¢,s,x) /¢, we have
)

a [° b
o a
at,/:, f@s,2) doe = / ai;(t,s,x) dz.

2
7
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Example 6. Let

1

G@t) = / sin (¢4 y) dy.
0

Applying Theorem 3 with fi,y) = sin (t+vy), we find Dif(ty) =fi=
cos (t+ y); hence '

1
¢® = [ s @y dy = ¢+0D
i _
= sin (¢4 1) — sin .

We can check this by first evaluating the integral for G (¢), obtaining G (¢) =
—cos (¢4 1) + cos ¢, which yields @ (t) = sin (¢ + 1) — sin &.

Example 7. Let -
21 -

G@) = / — e dy. i

: 1Y

Applying Theorem 3 with ;

1
fty) =~ e,
Y

we find Dy f(t,y) = f: = €%; hence
2 e2t —_ et

U ? 1
@) = f evdy =|-e?| =
T i i t

We cannot check this result by evaluating G (t) explicitly, since none of the
standard methods evaluate the integral

.
/ —edy.
Y

In a case like this, Theorem 3 is the only practical way to obtain a useful ex-

pression for G’ (¢).

Example 8. Let
G@y) = / F(s) ds,
0

Find G, and G,. Solution. By the fun

where f and f, are continuous.
= f(z,y), and by Leibniz’ rule,

mental theorem of caleulus, Gz (,y)

G = [ " 1) ds.
0

§4.1 DOUBLE INTEGRALS

Example 9. Let
o (2,Y)
H(xy) = f Fs) ds,
0

where_ Iy fu, @ ¢z, and ¢, are all continuous. Find H, and H.
Solution. We can use the chain rule, with the scheme o

o (@,Y)
@y) — (o@y)y) — / o) ds = H ()
0

or
(x:y) — (u,v) - z

where u = ¢ (z,y),v =y, and z = ./uf(s,v) ds. We find
0

_32 0z9u 9z v
dr  dudr @ ooz

= flu s ( [ Dosam dg)-o
0

> =fle(@y)y)ez(@y),
= j ) ey + ( /0 ) ds)-l
=fle (x,y),y>foy (@) + /: (m Dz f(sy) ds.
'PROBLEMS !

1. Evaluate the following repeated integrals.

Q& v @ L4
@[ v @ 4

8‘ log ¥ = lgw zz el

(e) | v doy O | 1 ‘
/llfo Traa (@ /o/o T+ 2%

‘. . j

oA
.1

185

2, vDe.scribe each of the sets in Fig. 9 in the form (4), and in the form (6).
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3

/ sin (sy) ds
0

It

(d) i(z,y)

(e) jzy) = / Wsin (sy) ds
0

(Hint: j(z,y) = h(z 4 y,y); use the chain rule.)

0

()
) k(ey) = / sin (sy) ds, where o is differentiable

@) (b) ¢ (z,v)
(g) Uzy) = f sin (sy) ds, where ¢ is differentiable
0

('—111)

(b) m(zy) = / " din (sy) ds (Hint: / " / " f ™
0 0

o1(z,y) V1

5. Evaluate the integrals in Problem 4(a)—(e), and- check the results
you found in Problem 4. l

(=1, 1) | 6. Suppose that f and f, are continuous on the rectangle
© @

Ficure 4.9

B={@y:a<a<bc<Ly<ad,

that ¢; and ¢, are differentiable on R, that o < ¢; < b, and that
a < ¢ <b. Prove that if

v2(z,y)
. : ! F .
~— 3. For each of the integrals in Problem 1, sketch the set S over which you | (2,y) /q) o f(s,y) ds,

are integrating, and rewrite the integral with dv and dy interchanged. T
If possible, evaluate the new repeated integral, and compare it to the
% result found in Problem 1. (Warning: It is difficult to obtain the
limits for the new repeated integral just by looking at the original
% ' limits; you need a clear picture of the set S over which you are inte-

grating.)

Fz(x;y) = f(¢2 ($,y),y) g_:Z - f(ﬂol(x:y) ,Z/) Z/_:-l )

Ao
and

o . |

Fua) = [ isw) do 1o ) 22 ~ oo 2.

4. Find the partial derivatives of the following functions by applying the -

fundamental theorem of calculus and Leibniz’ rule. : ‘ |
(Hint: Do Problem 4 first.)

1. Suppose that S is a region of the type in Theorem 2, and f and ¢ are
continuous on S.

(a) Prove that [fs (af + Bg) = « JSsf + B [[sg for all constants
a and B.
(b) Prove that if f > ¢, then [[sf > Isg.

() f(aog) = [ evds

1

<mmw=fw%

(Hint: g¢(z,y) = f(a%y), with f as in (a); use the chain rule) A .
« (a) Suppose that U is an open set, f is continuous on U, and [ [pf = 0

for every disk D contained in U. Prove that f=0inU. (Hint:
If f & 0, then f(P,) 5 0 for some point Py in"U; say f(IP)) > 0.

(@ h(ey) = [ sin () ds
0



188 DOUBLE INTEGRALS, VECTOR FIELDS, AND LINE INTEGRALS

Since f is continuous and U is open, there is a disk D contained in
U such that f(P) > %f(Po) for every point P in R. Now apply
Problem 7 (b).)

(b) Suppose that S is a region of the type in Theorem 2, f is continuous
onS,f>0,and [[sf=0. LetU be any open set contained in S.
Prove thatf = 0 on U. (Hint: Show that 0 < [of<[[sf=0

for every disk D contained in U.)

References. The following books give a thorough development
of double integrals, including the proofs omitted above. We will
refer to them again later in connection with Green’s theorem and

its extensions.

T. M. Apostol, Mathematical Analysis, Addison-Wesley, 1957

W. H. Fleming, Functions of Several Variables,
Addison-Wesley, 1965

M. Spivak, Calculus on Mantfolds, Benjamin, 1965
J. W. Woll, Jr., Functions of Several Variables, Harcourt Brace, 1966
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4.2 VECTOR FIELDS

A vector field F over a set S is a function assigning a vector F(P) to
each point P in S. Here the sét S will be in the plane, and the vectors
will be in R?. The two components of F(P) are often denoted M (P) and
N(P); thus F(P) = (M (P),N (P)), where M and N are ordinary real-
valued functions on S. To visualize F, picture at each point P in S an
arrow representing F (P), as in Fig. 10.

The two main physical examples are force fields and wvelocity fields.
A particle of mass M at the origin attracts a particle of mass m at the point
P by a force —ymMP/|P|?, where v is a gravity constant. The function

F(P) = —ymM [P|7°P )

is a vector field defined on the set where [P| = 0 (Fig. 10(a)) ; since it de-

seribes a force, it is called a force field.

For a simple example of a velocity field, imagine that a plate lying
on the plane is rotated counterclockwise about the origin at a rate of ¢
radians per minute. Then for any (z,y) in the plane, the point on the
plate lying over (z,y) moves with velocity F(z,y) = (—cy,cx), as you
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(a) F(P)=|P‘3P (b) F(x,y)=<—f,%')
Ficure 4.10

can easily check (see Problem 4). This i
. vector !
B o e rottion (b Tt ector field F is called the velocity
In a purely mathematical cont
' purely 1 ext, vector fields arise f rradi ;
Eremsely, if f is differentiable at every point in S, then F(P)roin %;3&(})1?“;3: :
C}?::kat;fle(;méfiz;a)lﬁ F on S. For example, if f(P) = ymM/ |P|, you can
a = —ymM |P|=* P, and we :
ok . . x get the force field (*
a gr al(\i;ezlt. The function f is called a potential function of the force F (=)V&JL”S
B F0 ‘every vector ﬁeld' 1s a gradient, though. For example, the velocit .
e (%,y) = (—cy,cx) is not the gradient of any function }” Supposg
fn_ e c.o}rlltrary, that F were a gradient Vf; then we would have fo= — cy,
t,i,ngoc:b,bence Jo= —¢, fuz =‘c,'and the mixed partials of f would be conz
b us but }Jnequal, contradicting Theorem 10 of the previous chapte
ent¥ t:here.ls no function f such that Vf(z,y) = (—cy cx) e
physicgist ;‘alses tﬁg }(lllliestion: Which vector fields are gradients? Or, in
rms, which force fields have potentials? . ,
a vector field defined over a rectangle: b RSB ey

Th 3

eorem 4. Suppose that F = (M ,N) is defined on an open rectangle
R={(@@y:a<az<bdc<y<d,

and the partial derivatives My and N, are continuous on R. Then F is

a gradient if and only if M, = N, .

P




