Homework 1

Due January 18th on paper at the beginning of class. Please let me know if you have a question or find a mistake.

- Taylor Section 1.1: \# 12.
- Taylor Section 1.2: \# 3 (only do $f(z)=e^{1 / z}$ and $f(z)=e^{-|z|^{2}}$), \#5, \#7.
- Taylor Section 1.3: \# 2.
- \# 4 from Section 1.1.4 (page 9) of Ahlfors' book:
https://www.matem.unam.mx/~hector/\[Lars_Ahlfors\]_Complex_Analysis_(Third_Edition).pdf
In this problem, a, b, and c are given complex numbers and you are solving for z.
Hint: One way to do this problem is this: first solve it in the case where a and b are real by taking real and imaginary parts of the equation and solving for $\operatorname{Re} z$ and $\operatorname{Im} z$. Then reduce to this case using a substitution $z=e^{i \varphi} w$ for a strategically chosen real number φ and then multiplying the equation through by $e^{i \psi}$ for another strategically chosen real number ψ. To find φ and ψ, take any real α and β such that $a=|a| \exp (i \alpha)$ and $b=|b| \exp (i \beta)$ and substitute these polar forms into the equation. The final condition on a and b has a simple form, but you do not need to simplify the resulting complicated formula for z; just write it out in terms of a, b, c, α, β.

An alternative substitution, avoiding polar form and instead using square roots of complex numbers, is $z=a^{p} \bar{a}^{q} b^{q} \bar{b}^{p} w$, followed by multiplying through by $a^{r} b^{r}$ or $\bar{a}^{r} \bar{b}^{r}$, where p, q, r are strategically chosen multiples of $1 / 2$. Square roots of complex numbers can be found using polar form, or alternatively more directly as in Section 1.1.2 (page 3) of Ahlfors' book.

Finally, as a last resort there is always the brute force method: take the real and imaginary parts of the equation, and solve the resulting system of two linear equations in two unknowns.

