Homework 2

Due January 25th on paper at the beginning of class. Please let me know if you have a question or find a mistake.

- Section 1.2: \# 8, \# 9 (for this one, replace $C(\Omega)$ by $C^{1}(\Omega)$), \# 10 .
- Section 1.5: \#1, \#2, \# 7, \# 12, \# 21 .
- Additional problems

1. Given $z \in \mathbb{C} \backslash\{0\}$ and a specific value of $\arg z$, show that $\log z=\log |z|+i \arg z$ with that value of $\arg z$ is given by $\int_{\gamma} d \zeta / \zeta$, where γ is the curve consisting of the segement from 1 to $|z|$ followed by the arc from $|z|$ to z through angle $\arg z$.
2. Write out the calculation of $\int_{\gamma} d \zeta / \zeta$ and sketch γ, with γ as above, for the case $z=4 i$ and $\arg z \in(-8 \pi,-6 \pi)$.

This is not part of the homework, but regarding the last two problems: each lap that γ makes around the origin corresponds to moving z to a neighboring sheet in the Riemann surface of the logarithm (i.e. up or down a level in the infinite parking garage.) In the last problem we travel to a sub-basement level. Here is a link with more discussion of the Riemann surface and a picture:

