Homework 8

Due April 12th on paper at the beginning of class. Please let me know if you have a question or find a mistake.

1. Let $\zeta(s)$ be the Riemann zeta function.
(a) Prove that $\zeta(s)=\overline{\zeta(\bar{s})}$ for all $s \in \mathbb{C} \backslash\{1\}$

Hint: This is a variant of Exercise 1 from Section 2.6 of Taylor. Use Equation (4.4.1).
(b) Use the result of part (a) to prove that the zeroes of ζ are arranged symmetrically with respect to the real axis (i.e. the complex conjugate of a zero is a zero).
(c) Use Equation (4.4.18) from Taylor to prove that the zeroes of ζ in the critical strip $\{s \in \mathbb{C}: 0<\operatorname{Re} s<1\}$ are arranged symmetrically with respect to the critical line $\operatorname{Re} s=1 / 2$.
(d) Use Equation (4.4.18) from Taylor to evaluate $\zeta(0)$ and $\zeta(-1)$.

Interpretation: Thus, writing $\zeta(-k)=1^{k}+2^{k}+3^{k}+\cdots$, the ζ function regularizes the divergent sums $1+1+1+\cdots$ and $1+2+3+\cdots$ to yield a finite answer rather than $+\infty$. This remarkable method is used to calculate energies and forces in quantum mechanics, with ζ making an appearance for the Casimir force between two parallel plates (see page 26 of https://arxiv.org/pdf/quant-ph/0106045.pdf). A simpler version of the same method, using $1 /(1-z)=1+z+z^{2}+\cdots$, gives $1+2+4+8+\cdots=-1$. In this case convergence also holds with respect to the 2 -adic metric, which is important in number theory, and can be used to solve Diophantine equations (see the first lecture here https://sites.math.rutgers.edu/~alexk/2023S572/index.html).
2. Let $\Omega=\{z \in \mathbb{C}: \operatorname{Re} z>0\}$ and let $D=\{z \in \mathbb{C}:|z|<1\}$.
(a) Find a biholomorphism $g: \Omega \rightarrow D$ such that $g(2023)=0$.
(b) Find $R>0$ such that, for any $q \in D$, the following are equivalent:
i. $|q|=R$.
ii. There exists a biholomorphism $g: \Omega \rightarrow D$ obeying $g(1)=0$ and $g(1 / 2)=q$.

Hint: Use the results of Exercise 12 from Section 1.1 of Taylor and Example 4 from Section 3.4 of Fisher.

