
Sturm–Liouville operators

Our study is motivated by the following fundamental problem, adapted from Fourier’s [Fou].

The heated bar. Let the bar be given by the interval [0, 1]. Let u(x, t) denote the temperature at
position x and time t. Let h(x) denote the intial temperature distribution, i.e.

u(x, 0) = h(x).

The rate of change of the total heat in any subinterval [a, x] ⊂ [0, 1] is equal to the flux F of heat into
the endpoints of the interval:

∂t

∫ x

a
u(y, t) dy = F (a, t)− F (x, t).

Differentiating with respect to x gives

∂tu(x, t) = −∂xF (x, t). (1)

Under reasonable conditions, heat flows from hotter regions to colder ones at a rate proportional to
the temperature gradient:

F (x, t) = −κ(x)∂xu(x, t), (2)

where the constant of proportionality κ(x) > 0 depends on properties of the bar at the position x.
Plugging (2) into (1) yields the heat equation

∂tu(x, t) = ∂x

(
κ(x)∂xu(x, t)

)
.

At the ends of the interval, we consider two kinds of conditions. The condition

u(0, t) = u(1, t) = 0,

called the Dirichlet condition, corresponds to the temperature at the ends being held fixed at 0. The
condition

∂xu(0, t) = ∂xu(1, t) = 0,

called the Neumann condition, corresponds to the flux at the ends being held fixed at 0, i.e. the ends
being insulated so that no heat can flow in or out.

This problem is solved by separation of variables. In Hilbert space terms, we seek an orthonormal
basis e1(x), e2(x), . . . of L2(0, 1) and numbers λ1, λ2, . . . such that

−(κ(x)e′j(x))
′ = λjej(x),

and such that
ej(0) = ej(1) = 0, or e′j(0) = e′j(1) = 0,

for the Dirichlet or Neumann conditions respectively. The basic examples are when κ = 1 and we get
Fourier sine and cosine series:

ej(x) =
1√
2

{
sin(jπx), Dirichlet,

cos(jπx), Neumann,
λj = j2π2, (3)

where in the Neumann case we must also include another basis vector e0(x) = 1 and corresponding
eigenvalue λ0 = 0; this can be derived by projecting the basis (exp(ikπx))k∈Z for L2(−1, 1) onto the
odd (for Dirichlet) or even (for Neumann) subspaces of L2(−1, 1), and then mapping to L2(0, 1).
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Whenever we have such a basis, provided limj→∞ λj = ∞, we can write

h(x) =
∞∑
j=1

cjej(x), cj = ⟨ej , h⟩L2 ,

and put

u(x, t) =
∞∑
j=1

cje
−tλjej(x).

More abstractly, we say that we are solving

∂tu(x, t) = −Au(x, t), u(x, 0) = h(x),

by putting

u(x, t) = e−tAh(x),

with e−tA defined by the eigenbasis functional calculus:

φ(A)

∞∑
j=1

cjej =

∞∑
j=1

cjφ(λj)ej .

Note that even though A = − d
dxκ(x)

d
dx is an unbounded operator, φ(A) is bounded whenever φ is

bounded on the spectrum, and this applies to φ(A) = e−tA as long as limj→∞ λj = ∞.

To check that such an eigenbasis exists, we need the following ODE existence and uniqueness
theorem, for the proof of which we follow Section 5.1 of [Olv].

Definition. For α < β real numbers, k ∈ N, the Sobolev space Hk(α, β) is the set of u ∈ Ck−1([α, β])

for which there exist v ∈ L2(α, β) and a constant c such that u(k−1)(x) = c +
∫ x
α v. We also put

H0(α, β) = L2(α, β).

Exercise 1. Let γ be a real number, u(x) = |x|γ . For which k is u ∈ Hk(−1, 1)?

Theorem 1. For any a, b ∈ L∞(0, 1), and α, β ∈ C, there is a unique u ∈ W 2,∞(0, 1) which solves

u′′(x) + a(x)u′(x) + b(x)u(x) = 0, u′(0) = α, u(0) = β. (4)

Proof. Without loss of generality, we may assume that (α, β) is (1, 0) or (0, 1).

Integrating (4) yields

u′(x) = −
∫ x

0

(
a(y)u′(y)− b(y)u(y)

)
dy + α

Integrating again, and integrating by parts to simplify, gives

u(x) =

∫ x

0
(y − x)

(
a(y)u′(y) + b(y)u(y)

)
dy + αx+ β. (5)

So if u solves (4) then it solves (5). Conversely, direct calculation shows that if u solves (5) then it
solves (4).

To solve (5), put

φ0(x) = αx+ β, φn+1(x) =

∫ x

0
(y − x)

(
a(y)φ′

n(y) + b(y)φn(y)
)
dy, u(x) =

∞∑
n=0

φn(x).
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To check convergence of the sum, estimate

|φ1(x)| =
∣∣∣ ∫ x

0
(y − x)

(
a(y)α+ b(y)(αy + β)

)
dy

∣∣∣ ≤ Mx,

where M = ∥a∥L∞ + ∥b∥L∞ . Similarly,

|φ′
1(x)| =

∣∣∣ ∫ x

c

(
a(y)α+ b(y)(αy + β)

)
dy

∣∣∣ ≤ Mx.

Inductively, if

|φn(x)| ≤
(Mx)n

n!
, |φ′

n(x)| ≤
(Mx)n

n!
,

then

|φn+1(x)| =
∣∣∣ ∫ x

0
(y − x)(a(y)φ′

n(y) + b(y)φn(y)) dy
∣∣∣ ≤ Mn+1

n!

∫ x

0
yn dy =

(Mx)n+1

(n+ 1)!
,

and similarly for φ′
n+1. Uniqueness is proved in Exercise 2. □

Exercise 2. Let u1 and u2 be any two solutions to (4), and let w = u1−u2. Prove that w is identically
zero by using the integral equation obeyed by w (a version of (5)) to show that |w(x)| ≤ (2Mx)n/n!
for any n.

Now we are ready to prove that an eigenbasis exists, as in the Supplement to VI.5 of [ReSi].

Theorem 2. Let κ ∈ C1([0, 1]), V ∈ L∞(0, 1), with κ positive and V real valued. Let

D = {u ∈ H2(0, 1) : u(0) = u(1) = 0}, or D = {u ∈ H2(0, 1) : u′(0) = u′(1) = 0}.
Let

A : D → L2(0, 1), Au = (−κu′)′ + V u.

There exists an orthonormal basis e1, e2 . . . of L2(0, 1), and a corresponding sequence of real numbers
λ1 < λ2 < · · · , such that λj → ∞, each ej is in D, and

Aej = λjej . (6)

For our application to the heated bar problem we take V = 0, but for other applications, such as to
quantum mechanics, it is interesting to take nontrivial V , and we will see that this makes essentially
no difference to the proof. 1

Proof. We define the λj to be those complex numbers for which we can solve (6) for some ej ∈ D with
∥ej∥L2(0,1) = 1. By uniqueness of solutions to ODEs (Theorem 1), if ẽj is a second solution to (6) with
the same λj , then ej and ẽj are proportional. Thus we say that each λj is a simple eigenvalue.

By integration by parts,

λj = λj

∫ 1

0
|ej |2 =

∫ 1

0
ej

(
− (κe′j)

′ + V ej

)
=

∫ 1

0

(
κ|e′j |2 + V |ej |2

)
≥

∫ 1

0
V |ej |2 ≥ ess inf V, (7)

so all the λj are real and bounded below. Moreover, if λj ̸= λk, then ej and ek are orthogonal, because
the same integration by parts calculation shows λk

∫
ejek = λj

∫
ejek. Since L2(0, 1) is separable, this

shows that the λj are at most countable. Let S = {λ1, λ2, . . . }.

1See Chapter 9 of [Tes] for a more general treatment. Another possible variant is to replace (0, 1) by an unbounded
interval and require V → ∞ as |x| → ∞.



4

It remains to show that the e1, e2, . . . have dense span in L2(0, 1). This is the hard part. (At this
point we have not even shown that S is nonempty.) For this we will construct the resolvent (A−λ)−1:
given f ∈ L2(0, 1) and λ ̸∈ S, we will solve

(A− λ)u = f. (8)

for u ∈ D.

Observe first that a solution to (8), if it exists, is unique. Indeed, the difference of any two solutions
is in the kernel of (A− λ) and hence vanishes because λ ̸∈ S.

By the method of variation of parameters, we look for a solution to (8) of the form

u(x) =

∫ 1

0
G(x, y)f(y) dy, (9)

where

G(x, y) = −u0(min(x, y))u1(max(x, y))

κW
, (10)

where u0 and u1 are solutions to the homogeneous equation

−(κu′)′ + V u− λu = 0, (11)

and W = u′0u1−u0u
′
1 is their Wronskian. Note that (κW )′ = 0, so the denominator in (10) is constant

and nonzero as long as u0 and u1 are linearly independent.

A direct calculation shows that u, defined by (9), solves (8). It remains to fix the boundary
conditions, i.e. to get u ∈ D. For this we impose

u0(0) = u1(1) = 0, or u′0(0) = u′1(1) = 0, (12)

according to which boundary conditions we are considering. This is consistent with κW ̸= 0, because
if u0 and u1 were linearly dependent and nonzero, then they would be eigenfunctions and this is ruled
out by λ ̸∈ S.

We have now proven that (A− λ) : D → L2(0, 1) is invertible for λ ̸∈ S, and(
(A− λ)−1f

)
(x) =

∫ 1

0
G(x, y)f(y) dy.

Since G is continuous, (A− λ)−1 is compact for all λ ̸∈ S. Moreover, if λ is real then we may choose
u0 and u1 real valued, which, combined with G(x, y) = G(y, x), yields∫ 1

0
g(x)

∫ 1

0
G(x, y)f(y) dy dx =

∫ 1

0

∫ 1

0
G(y, x)g(x) dxf(y) dy,

and hence (A− λ)−1 is self-adjoint on L2(0, 1) for λ ∈ R \ S.

Fix Λ ∈ R \S and let R = (A−Λ)−1. Since the eigenvectors of R have dense span in L2(0, 1), it is
enough to prove that R has the same eigenvectors as A. For this, observe that 0 is not an eigenvalue
of R because (A− Λ)R = I, while for µ ̸= 0, we have ker(R− µ) = ker(A− Λ− µ−1). □

The eigenfunction e1 is called the ground state, and λ1 is the ground state energy. Note that if V
is identically zero, as in the original heated bar problem, then our integration by parts calculation (7)
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shows that λ1 ≥ 0. Equality occurs if and only if the boundary condition is Neumann, and in that
case e1 is constant. This shows that in the Dirichlet case we have∫ 1

0
|u(x, t)|2 dx =

∫ 1

0

∣∣∣ ∞∑
j=1

cje
−tλjej(x)

∣∣∣2 dx =

∞∑
j=1

|cj |2e−2tλj ≤ e−2tλ1

∞∑
j=1

|cj |2 = e−2tλ1∥h∥2L2(0,1),

and so u converges to zero at an exponential rate, with the exponent given by the ground state energy.

Exercise 3. Prove that for the Neumann heated bar problem, u converges to a constant at an
exponential rate. Give a simple formula for the constant in terms of the initial condition.

These examples demonstrate the importance of the lowest eigenvalues λ1, λ2. The best way to
study these is the variational method. This has many far-reaching versions and generalizations (see
Sections 5.4 and 6.4 of [Bor] for some of them) but a convenient basic one for our present setting is
the following.

Theorem 3. Let A : D → H, with D ⊂ H, e1, e2, . . . a sequence in D which is an orthonormal basis
of H, such that Aej = λjej, and such that λ1 = min{λ1, λ2, . . . }. Then

λ1 = min
u∈D\{0}

⟨u,Au⟩H
∥u∥2H

.

Proof. Writing u =
∑∞

j=1 cjej , we have

⟨u,Au⟩H =
∞∑
j=1

λj |cj |2 ≥ λ1

∞∑
j=1

|cj |2 = λ1∥u∥2H,

with equality when u = ej . □

The quantity ⟨u,Au⟩H/∥u∥2H is called the Rayleigh quotient. For our heated bar, the integration
by parts calculation (7) shows that it is given by

⟨u,Au⟩H
∥u∥2H

=

∫ 1
0 κ|u′|2∫ 1
0 |u|2

.

Thus if κ(x) is between κmin and κmax for all x, then λ1 for κ is between the λ1’s for κmin and κmax,
i.e. in the Dirichlet case we have

κminπ
2 ≤ λ1 ≤ κmaxπ

2.

Applying Theorem 3 with H given by the orthogonal complement of the constant functions in L2(0, 1)
in the Neumann case we find the same result, where λ1 now denotes the second eigenvalue (we start
the indexing with λ0 as in (3)).

Exercise 4. Let A : D → H, D ⊂ H. Prove that the following are equivalent.

(1) There exist a sequence e1, e2, . . . in D which is an orthonormal basis ofH, such that Aej = λjej ,
each λj is a real number, and |λj | → ∞ as j → ∞.

(2) There exists Λ ∈ R such that (A−Λ): D → H is bijective, and ı(A−Λ)−1 : H → H is compact
and self-adjoint, where ı denotes the inclusion D → H.
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An operator with the properties in the Exercise above is called a self-adjoint operator with compact
resolvent.

To put this in the more general context of unbounded operators on Hilbert space, we need some
standard definitions as in Chapter 3 of [Bor] and Chapter VIII of [ReSi]. The adjoint of an operator
A : D(A) → H, where D(A) ⊂ H is dense, is the operator A∗ : D(A∗) → H, where

D(A∗) = {φ ∈ H : there exists Cφ such that |⟨φ,Au⟩H| ≤ Cφ∥u∥H for all u ∈ D(A)},
and where A∗φ is defined by the Riesz representation theorem to be the unique element of H such
that ⟨φ,Au⟩H = ⟨A∗φ, u⟩H for all u ∈ D(A). An operator is self-adjoint if A = A∗.

A basic example is the multiplication operator MV : L∞(0, 1) → L2(0, 1), where V is measurable.
Then D(MV ) = D(M∗

V ) = {u ∈ L2 : V u ∈ L2}, with the domain being dense because it includes all
simple functions, and (MV )

∗ = (MV̄ )
∗. So such an operator is self-adjoint if and only if V is real

valued.

The definition of adjoint is cumbersome, but works well in the usual proof that

kerA∗ = (ranA)⊥, (13)

which is enough for the following theorem.

Theorem 4. The operator A from Theorem 2 is self-adjoint, in both the Dirichlet and Neumann
cases.

Proof. Observe first that, if φ, u ∈ D, then the integration by parts calculation (7) implies that
⟨φ,Au⟩L2 = ⟨Aφ, u⟩L2 . This shows that D(A) ⊂ D(A∗) (using Cφ = ∥Aφ∥L2) and that A∗ restricted
to D(A) equals A.

It remains to show that D(A∗) ⊂ D(A). Let φ ∈ D(A∗), let λ ∈ C \ S, and let

u = (A− λ)−1(A∗ − λ)φ.

Then (A − λ)u = (A∗ − λ)φ, and since Au = A∗u, we have (A∗ − λ)(u − φ) = 0, so by (13) we have
u − φ ∈ (ran (A − λ̄))⊥. But since λ̄ ∈ C \ S, this implies u = φ because (A − λ̄) : D(A) → L2 is
bijective. □

When D(A) ⊂ D(A∗) and A∗|D(A) = A , as in the first paragraph of the above proof, we say that
A is symmetric. This pattern of analysis is typical for self-adjoint differential operators: one proves
relatively easily by integration by parts that the operator is symmetric, and then works harder to
establish self-adjointness.

Let us now give another more abstract proof that A as in Theorem 2 has compact resolvent, one
which generalizes to higher dimensional domains and manifolds.

For this, we use the fact that H1(0, 1) is a Hilbert space for the inner product

⟨f, g⟩H1 = ⟨f, g⟩L2 + ⟨f ′, g′⟩L2 .

Indeed, H1 is a closed subspace of the direct sum of L2 with itself.

For the Dirichlet problem, we work with

H1
0 = {u ∈ H1 : u(0) = u(1) = 0},

which is a closed subspace of H1.
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Theorem 5. If λ < ess inf V , then (A− λ) : H2 ∩H1
0 → L2 is bijective.

Proof. First note that the domain and codomain are correct, and the map is injective.

To prove surjectivity, for f , g ∈ H1
0 , let

Q(f, g) =

∫ 1

0

(
κf

′
g′ + (V − λ)fg

)
.

If λ < ess inf V , then Q defines an inner product on H1
0 with an equivalent norm to that of the ⟨·, ·⟩

inner product. Then, similarly to (7), for all u ∈ D and φ ∈ H1
0 (0, 1), we have

⟨φ, (A− λ)u⟩L2 = Q(φ, u). (14)

By the Riesz representation theorem, given f ∈ L2, there is a unique u ∈ H1
0 such that

⟨φ, f⟩L2 = Q(φ, u)

for all φ ∈ H1
0 . Next, we check that u ∈ H2; this holds because, by (14), κu′ has a weak derivative

obeying
−(κu′)′ + (V − λ)u = f ;

see Section 2.5 of [Bor]. □

This proof generalizes directly to higher dimensions and manifolds. Let Ω ⊂ Rd be an open set (or
a Riemannian manifold) and define A : {u ∈ H1

0 (Ω): div(κ grad u) ∈ L2(Ω)} → L2(Ω) by

A = −div(κ grad u) + V u,

and put

Q(f, g) =

∫
Ω
κ|grad u|2 + V |u|2.

Next prove compactness by proving compactness of the inclusion H1
0 (Ω) → L2(Ω) when Ω is

bounded. For this, factorize this inclusion as a composition

H1
0 (Ω) → H1(T) → L2(T) → L2(Ω),

where T is a torus that contains Ω (on a manifold, use a partition of unity and local coordinates as in
Section 9.4 of [Bor]), and prove compactness of the middle term using Fourier series as in Section 6.2.1
of [Bor]).

Unbounded domains. Now consider the operator

Au = −(κu′)′ + V u = 0,

where κ ∈ C1(R), V ∈ L∞(R), κ > 0, and such that (κ − 1) and V are both compactly supported.
We equip A with the domain

D = H2(R).
Let us see how Stone’s formula ([Bor, Theorem 5.10] or [ReSi, Theorem VII.13])

g(A) =
1

2πi
lim
ε→0+

∫ ∞

−∞
g(λ)

[
(A− λ− iε)−1 − (A− λ+ iε)−1

]
dλ (15)

simplifies in this example, following in part [TaZw].

As in (10), we solve
(A− λ)u = f,
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by writing

u(x) =

∫ ∞

−∞
G(x, y)f(y) dy,

with

G(x, y) = −u−(min(x, y))u+(max(x, y))

κW
,

where u− and u+ are solutions to the homogeneous equation

−(κu′)′ + V u− λu = 0.

We put k =
√
λ, with Im k > 0 when λ ̸∈ [0,∞), and impose

u−(x) = e−ikx, when x ≪ 0,

and
u+(x) = eikx, when x ≫ 0.

Correspondingly, there are complex constants Ak, Bk, Ck, Dk such that

u−(x) = Ake
−ikx +Bke

ikx, when x ≫ 0,

and
u+(x) = Cke

−ikx +Dke
ikx, when x ≪ 0.

Since u+ and u− are continuous, it follows that there is c(k) such that for all real x we have

|u−(x)| ≤ c(k)eIm(k)x, |u+(x)| ≤ c(k)e− Im(k)x.

Hence
|G(x, y)| ≤ c′(k)eIm(k)min(x,y)e− Im(k)max(x,y) = c′(k)e− Im(k)|x−y|,

so, by Schur’s test (Exercise 2.11 of [Bor]), G defines a bounded on operator on L2(R). Thus we have
solved

(A− λ)u = f,

as long as λ ̸∈ [0,∞) and W ̸= 0; note that as before W = 0 is equivalent to λ being an eigenvalue
of A. Also as before, A is symmetric by integration by parts, so it is self-adjoint and any eigenvalues
can only be real and negative. Moreover, if λj is an eigenvalue with normalized eigenfunction ej , then

λj =

∫ ∞

−∞
κ|e′j |2 + V |ej |2 ≥ essinfV,

and since the Wronskian is entire in k, it follows that there can be only finitely many eigenvalues, all
in the interval [essinf V, 0).

To get the contribution of an eigenvalue λj to (15), we write

1

2πi
lim
ε→0+

∫ λj+δ

λj−δ
g(λ)

[
(A− λ− iε)−1 − (A− λ+ iε)−1

]
dλ = −g(λj)

1

2πi

∫
Γλj

(λ−A)−1 dλ,

where Γλj
is a small loop about λj , because we may take the limit as δ → 0 (since the two resolvents

in the integrand on the left cancel for λ in a punctured neighborhood of λj). Thus we must compute
a residue. The integral kernel G(x, y) has a simple pole (a pole of higher order would contradict the
resolvent bound ∥(A− λ)−1∥H→H = supx∈σ(A) |x− λ|−1 ≤ supx∈R |x− λ|−1 = | Imλ|−1 ≤ |λ− λj |−1),

and at this pole k = iµj with µj =
√
−λj > 0 and each of u+, u− is a multiple of a corresponding

normalized eigenfunction ej , yielding that the integral kernel of

−g(λj)
1

2πi

∫
Γλj

(λ−A)−1 dλ
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is
g(λj)ej(x)ej(y),

since when g is the indicator function of λj we must get a projection by the functional calculus (the
multiplier of an indicator function is a projection). Hence we may write (15) as[

g(A)
]
(x, y) =

J∑
j=1

g(λj)ej(x)ej(y) +
1

2πi

∫ ∞

0
g(λ)

[
Gk(λ)(x, y)−G−k(λ)(x, y)

]
dλ,

or [
g(A)

]
(x, y) =

J∑
j=1

g(λj)ej(x)ej(y) +
1

πi

∫ ∞

0
g(k2)

[
Gk(x, y)−G−k(x, y)

]
k dk. (16)

Note that for the free problem A0 = − d2

dx2 we have, by Fourier transformation,

g(A0)(x, y) =
1

2π

∫ ∞

−∞
g(k2)eik(x−y) dk =

1

2π

∫ ∞

0
g(k2)

[
e−ikxeiky + eikxe−iky

]
dk.

Thus,

g(A0)u =

∫ ∞

0
dk g(k2)

[
⟨e−k, u⟩L2(R) e−k + ⟨ek, u⟩L2(R) ek

]
, ek(x) = eikx/

√
2π, (17)

which is to be compared with the formula

g(B)u =

∞∑
j=1

g(λj)⟨ej , u⟩H ej . (18)

for discrete spectrum. We say that in (17) the continuous spectrum [0,∞) has multiplicity two, because
there are two terms. If we did the same problem with R replaced by the half line, with a Dirichlet or
Neumann boundary condition at 0, we would get just one term.

We also write (18) as

g(B) =
∞∑
j=1

g(λj)ej ⊗ ej ,

where ⊗ is the tensor product, or outer product, (in Dirac’s notation v ⊗ w = |v⟩⟨w|) and similarly
(17) as

g(A0) =

∫ ∞

0
dk g(k2)

[
e−k ⊗ e−k + ek ⊗ ek

]
.

To get the same result for A, we use Vodev’s identity to derive scattering solutions, and get

g(A) =

J∑
j=1

g(λj)ej ⊗ ej +

∫ ∞

0
dk g(k2)

[
ẽ−k ⊗ ẽ−k + ẽk ⊗ ẽk

]
,

where

ẽk =
(
R(k)[χ, d2

dx2 ]− χ+ 1
)
ek.

To derive Vodev’s identity, write

R(k)−R(k′) = (k2 − (k′)2)R(k)R(k′),

1 = χ(2− χ) + (1− χ)2,

(1− χ)R(k′) = R0(k
′)
(
1− χ+ [ d2

dx2 , χ]R(k)
)
,
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and deduce

R(k)−R(k′) =
(
k2 − (k′)2

)
R(k)χ(2− χ)R(k′)+{

R(k)[χ, d2

dx2 ]− χ+ 1
}
(R0(k)−R0(k

′))
{
1− χ+ [ d2

dx2 , χ]R(k)
}

Vodev’s identity also proves that if we let Ω ⊂ Rd be an open set (or a Riemannian manifold) which
agrees with Rd outside of a bounded region, and we define A : {u ∈ H1

0 (Ω): div(κ grad u) ∈ L2(Ω)} →
L2(Ω) by

A = −div(κ grad u) + V u,

where κ = 1 and V = 0 outside of a bounded region, then the spectrum of A consists of [0,∞) together
with up to finitely many negative eigenvalues. If we allow V to be more general, for example a Coulomb
potential, we get the same picture except near λ = 0, where we can now have an accumulation of
eigenvalues.
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