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This note presents the change of variables theorem, following Lax’s 1998 paper Change of Variables
in Multiple Integrals and Section 4.5 of Taylor’s book Introduction to Analysis in Several Variables.
Questions, comments, and corrections are gratefully received at kdatchev@purdue.edu.

The first section covers the theorem itself, and the second uses it to prove Brouwer’s fixed point
theorem.

1. THE CHANGE OF VARIABLES THEOREM

The change of variables theorem in one dimension says that if f: R — R is continuous and ¢: R — R
is C*, and if p(a) = A and ¢(b) = B, then

b B
/ F (@) () di = /A f() dy.

One can prove this using the fundamental theorem of calculus: let g(y) = [} f(z)dz. Then
¢ (y) = f(y) and the right hand side becomes g(B) — g(A) while the left hand side becomes

b b d
[ dte@ne e = [ 2L gtote) o = go®) - alipta) = 9(B) ~ g(4).

Note that writing it this way gives a result which does not require ¢ to be invertible. Our plan is
to mimic this proof in higher dimensions.

Let f: R® — R be a continuous function of compact support, and let ¢: R® — R™ be C*°. We ask,
under what conditions on ¢ can we prove that

/ F(p(@))J (x) da = / £(v) dy, (1)

,i0%(x))? By the chain rule and the multiplicativity
of the determinant, the class of functions ¢ for which (1) holds is closed under compositions. It
clearly includes translations.

where J(z) is the Jacobian determinant det(0

Case 1: ¢ is linear, p(z) = Az, with J(z) = det A > 0.

Approximating f f by Riemann sums and using linearity, we see that it is enough to prove (1) in
Case 1 when f is the characteristic function of a n-cube C. Then we must show det A vol(¢~(C)) =
vol(C'). This is true if and only if det A > 0.

Case 2: ¢(z) = z for |z| large enough.

Let

,yl
oyt g = /_ FaP oy e, Bg(y) = F(y).
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Then we rewrite the integrand on the left side of (1) as
Oy 9) () (x) dz' A - Nda"™ = o*(D,19)@* (dy' A -~ Ady"™) = @*(dg Ady® A--- N dy")
= J(x)dzt A - Ada™,

where in the second equality we used dg = > _, 9y, g dy*, and where J(z) is the Jacobian of the
transformation (g o ¢, ©?,..., "), i.e.

f(gO(QS‘))J($) = Z Sgn(a)aa(l)(g ° 90)80(2)902 U aa(n)gona

where the sum is over permutations of {1,...,n}, and the partials on the right are with respect
to the z variables and everything is evaluated at z. We now plug this into the left side of (1) and
integrate by parts over a cube (—¢,¢)" large enough to encompass the supports of f and ¢ — I,
taking the 0, () derivative off d,(;)(g o ¢) and putting it on 80(2)g02 O n)@", to get

/f(@(a:))J(x) drx = boundary terms —
/Z sgn(o)(g o ¢) Z O 2%+ 0o (o)™ 0(1) O (1) " O o1y "1+ - Oy ™
o k=2

But for every k, we have Y-, sgn(0)0,2)0” - - Do (k1) 2" ' 0o (1) 0o (k)" O (k1) " -+ Dy ™ = 0
because for smooth ¢ we have 80(1)8U(k)<pk = 80(k)80(1)g0k. This leaves the boundary terms, and to
simplify these we use the fact that ¢ = I on the boundary and g = 0 on all boundary faces except
{e} x [—¢, "L, giving

/f(cp(w))J(w)dw—/g(c,yz,---,y")dyz---dy”—/fdy,

where we inserted the definition of g and used the fact that f is supported in (—c¢,c¢)”. This
completes the proof that (1) holds in the case where p(z) = z for |x| large enough.

Case 3: There is a neighborhood U of the support of f such that ¢ is injective! on ¢! (U) and
J > 0on o }U).

By a partition of unity argument, it is enough to show that every p in the support of f has a
neighborhood U, such that (1) holds with f replaced by fp,, where f, is a continuous function
supported in U,. By composing with a linear function and a translation we may assume that p = 0
and that Dp(0) = I. By Case 2, and using the injectivity of ¢, it is enough to prove that there
exists a C'° injective map ®: R™ — R" such that ® = ¢ near 0 and ® = I off a compact set.

Let
®(z) = p(x)b(z/e) + x(1 - b(z/e)),
where b € C*°(R") takes values in [0, 1], is 1 on Bj /9, and vanishes outside of By, where B, is the

open ball of radius r centered at the origin, and € > 0 is to be determined. It is clear that ® = ¢
in B,y and ® = I off B, so it remains to choose € small enough that ® is injective. But

[z — & < |[(x) — U(T)| + |D(x) — B(T)],
INote that by the inverse function theorem replacing ‘“injective on ¢~ (U)’ with ‘is a diffeomorphism from o~ *(U)

to U’ results in an equivalent condition: see Corollary I1.6.7 of Boothby’s Introduction to Differentiable Manifolds
and Riemannian Geometry.



where ¥(x) = ®(z) — 2, and using the mean value bound we have
(W(z) = W(@)| = [b(z/e)(p(z) — 2) = b(Z/e)(p(2) — )]
< ((max|b(z/e)(@¢"(2) - 0F) — Qb= /e) (" (2) — ) /el )nla - ),

where the max is taken over z € B. and j,k € {1,...,n}. It is enough to show that this max
tends to 0 as € — 0, because then for € small enough we have |¥U(z) — ¥(Z)| < |z — Z|/2, and thus
|z — 2| < 2|®(x) — ®(Z)| which implies ® is injective.

To show the max tends to 0 as € — 0, use the mean value bound again to write
max [b(z/2) (89" (2) — 85)| < max|90" (2) — 85| < (max |00 ) n'/2e,
and
max |9;b(2/2) (¥ (2) — ) /e] < max|9;0] max |* () — 2| e

< max |9;b| max |9 " (2) — 5§\n1/2 < max |9;b| max |0;0;¢" | ne.

More general cases:

We can treat the case J(x) < 0 by switching two rows or columns of ¢. That leads to the statement

that
[ re@s@ids = [ 1w, (2)

provided either J(z) never vanishes on the support of f or ¢(z) = +x outside of a compact set.

We can replace the right side of (2) by fU y) dy for an open set U by using a partition of unity
to write f € C(U) as f = ijl f], where each fj is continuous and compactly supported. Then
the left side of (2) becomes f(p(U) fle(x)|J(x)|dx

Using Lebesgue theory, we can allow f € L'(R™) by using a partition of unity to reduce to the case
where f is compactly supported, then linearity to reduce to the case where f is nonnegative, then
a sequence of truncations f,(x) = min{n, f(x)} and the monotone convergence theorem to reduce
to the case where f is bounded, and finally the fact that continuous functions of compact support
are dense in bounded compactly supported integrable functions.

2. THE BROUWER FIXED POINT THEOREM

The Brouwer Fixed Point Theorem. Let F: B; — B; be continuous. Then there is z € By
such that F(z) =

Here and below, B, = {z € R": |z| < a}, and B, and 0B, are its closure and boundary.

A fun example is that if you take a map of the room you are in (or of the city, or of the country,
etc.) and crumple it, there is always a point on the map which lies directly over its corresponding
point on the ground. Here we are using the fact that there is a homeomorphism from B; C R? to
the shape of this room.



The Brouwer fixed point theorem follows from a higher dimensional version of the familiar inter-
mediate value theorem, which we simply call

The Intermediate Value Theorem. Let G: By — Bj be continuous. If G|gp, is the identity,
i.e. if G(z) = = whenever |z| = 1, then G is surjective.

Proof that IVT implies BFPT. We argue by contradiction. Suppose F': By — FLiS continuous
and F(x) # x for all z € By. Then define G: By — 0B; by taking each point € B; to the point
on dBj obtained by following the ray from F(x) to x until it meets 0B, as in the picture below

Then G satisfies all the hypotheses of the Intermediate Value Theorem but not the conclusion, so
we have a contradiction. O

We will prove IVT using the change of variables formula in this form: if ¢: R® — R™ is C*° and
there is R such that ¢(z) = x whenever |z| > R, then

/ F(p(@))J () da = / £(v) dy, 3)

for any continuous and compactly supported function f. It is significant that we did not have to
assume that ¢ is injective or surjective.

Lemma. If o: R” — R"™ is C* and there is R such that ¢(z) = 2 whenever |z| > R, then ¢ is
surjective.

Proof. We again argue by contradiction. Suppose ¢ is not surjective. Since ¢ is the identity off of
Bp, there must exist yg € Bg such that ¢(x) # yg for all z € Bg. But ¢(Bg) is compact, so there
is a neighborhood U of yg such that ¢(x) ¢ U for all € R™.

Let f be a smooth function supported in U such that f f = 1. Then f o vanishes identically, and
we obtain the contradiction that the right side of (3) is 1 and the left side is 0. 0

Proof of IVT. Extend G to a continuous function R™ — R™ by putting G(z) = x for all x ¢ By. If
G happens to be C'*° then we may apply the Lemma with ¢ = G and we are done.

If not, take a sequence of C'*° functions 1, @a,... converging to G such that for all x we have
@j(x) = x for when |z| > 2 and such that

max [G(z) —¢;()| >0 asj— co. (4)



Let y € By be given, let z1, x2, --- € By obey ¢;(z;) = y. Let x;, xj,, ... be a subsequence
converging to some limit z* € By. Then

G (%) =yl <[G(27) = Glag)| + [G(25) = @i (2]
which tends to zero as k — oo by (4) and the continuity of G. This proves G(z*) = y and thus
that G is surjective.

To construct such a sequence 1, @2,..., let b be a smooth function supported in B; such that
[ =1 (as in the proof of the Lemma above ), put H(y) = G(y) — y and put

pj(z) =z +j" /w x —y))H (y)dy.

To see where this comes from, note that ¥ (j(z — y)) is nonzero only when |z — y| < 1/j and
hence roughly speaking for j large we have H(y) ~ H(x) in the integrand, after which using

3" [z —y))dy = [ = 1 gives p;(z) ~ z+ H(x) = G(x).

Now observe that ¢; € C° by differentiating under the integral sign, using the fact that the
integrands are continuous and compactly supported in y, even after any number of differentiations
with respect to x. To see that ¢;(x) = « when |z| > 2, observe that H(y) is nonzero only when
ly| <1 and ¢ (j(xr —y)) is nonzero only when |z — y| < 1/j, and hence the integrand can only be
nonzero when |z| <14 1/j.

It remains to check (4). We make precise the reasoning above using ‘~’ by writing

G(z) — pj(z) = j /¢ r— ) (H(z) dy—/¢ Hz+ 27Y))dz,

where for the first equality we used j f Y(j(z —y))dy = [ =1, and for the second the change
of variables z = j(y — =), dz = j™dy. Since a continuous function on a compact set is uniformly
continuous, for every ¢ > 0 there is N such that |H(x) — H(z+2j~!)| < & when j > N and |2| < 1,
regardless of x. That gives |G(z) — ¢;(z)| < € [ 4|, and hence (4). O

Later in life Brouwer became a renowned enemy of proof by contradiction, so it is always a pleasure
to use contradiction to prove his most famous theorem. Actually a direct proof is easy in the
one-dimensional case, because one can prove the intermediate value theorem by repeated bisection
(a binary search). In the higher dimensional cases I'm told you can do it using Sperner’s lemma
from combinatorics.
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