Homework 1

Due September 2nd on paper at the beginning of class. Please let me know if you have a question or find a mistake.

- 1. Consider the two-sphere $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}.$
 - (a) Let $U_1 = \mathbb{S}^2 \cap \{z > 0\}$ and $\psi_1(x, y, z) = (x, y)$ be a coordinate neighborhood. Find $\psi_1(U_1)$ and compute $\psi_1^{-1} : \psi_1(U_1) \to \mathbb{S}^2$.
 - (b) Repeat part (a) for $U_2 = \mathbb{S}^2 \cap \{y < 0\}$ and $\psi_2(x, y, z) = (x, z)$.
 - (c) Find $\psi_1(U_1 \cap U_2)$ and $\psi_2(U_1 \cap U_2)$ and compute $\psi_2 \circ \psi_1^{-1}$ and $\psi_1 \circ \psi_2^{-1}$.
 - (d) Let U_3 be the range of $(0, 2\pi) \times (0, \pi) \ni (\theta, \varphi) \mapsto (\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi)$ and ψ_3 the inverse of this map. Repeat part (c) with U_3 and ψ_3 replacing U_2 and ψ_2 .
- 2. Let M be the the closed unit disk $\{(x, y) \in \mathbb{R}^2 \mid r \leq 1\}$ with opposite boundary points identified, where $r = \sqrt{x^2 + y^2}$. Prove that

$U_1 = \{r < 1\},\$	$\psi_1(x,y) = (x,y),$
$U_2 = M \cap \{x \neq 0\},$	$\psi_2(x,y) = (\arctan(y/x), (1-r)\operatorname{sgn} x),$
$U_3 = M \cap \{y \neq 0\},$	$\psi_3(x,y) = (\arctan(x/y), (1-r)\operatorname{sgn} y).$

is an atlas on M, and compute all the transition functions, including their domains and ranges.

3. Find a function g such that $(x, y) \mapsto [x, y, g(x, y)]$ is a bijection from the manifold of Problem 2 to $P^2(\mathbb{R})$. You don't have to check this explicitly, but your final result should be a homeomorphism between M and $P^2(\mathbb{R})$, and maybe even a diffeomorphism. Thus we have another picture of the projective plane as a manifold.