Kiril Datchev MA 562 Fall 2022

Homework 2

Due September 9th on paper at the beginning of class. Please let me know if you have a question or find a mistake.

- 1. Exercise II.2.2.
- 2. Exercise II.2.5 (second or revised second edition), aka Exercise II.2.4 (first edition).
- 3. Let M be a set, and let m and n be positive integers. Let U_{α} and U_{β} be subsets of M with $U_{\alpha} \cap U_{\beta} \neq \emptyset$. Let $\psi_{\alpha} \colon U_{\alpha} \to \mathbb{R}^{n}$ and $\psi_{\beta} \colon U_{\beta} \to \mathbb{R}^{m}$ be one-to-one functions such that the sets $\psi_{\alpha}(U_{\alpha} \cap U_{\beta})$ and $\psi_{\beta}(U_{\alpha} \cap U_{\beta})$ are open. Suppose the functions $\psi_{\alpha} \circ \psi_{\beta}^{-1} \colon \psi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \mathbb{R}^{n}$ and $\psi_{\beta} \circ \psi_{\alpha}^{-1} \colon \psi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \mathbb{R}^{m}$ are C^{1} . Use the result of the previous exercise to show that n = m.
- 4. Exercise II.5.5. Where it says " $Y = \sum \beta^i(x) \partial / \partial y^i \varepsilon \mathfrak{X}(U)$ ", it should be " $Y = \sum \beta^i(x) \partial / \partial x^i \in \mathfrak{X}(U)$ ", where $\mathfrak{X}(U)$ is the space of C^{∞} vector fields on U.
- 5. Exercise II.6.3.
- 6. The reduced version of the inverse function theorem says the following. Let f be a C^1 function mapping a neighborhood of the origin in \mathbb{R}^n to a neighborhood of the origin in \mathbb{R}^n , with f(0) = 0 and Df(0) = I. Then there exist a neighborhood U of the origin in \mathbb{R}^n and a C^1 function $g: f(U) \to U$ such that g(f(x)) = x for every $x \in U$ and f(g(y)) = y for every $y \in f(U)$.

The more general version of the inverse function theorem says the following. Let $a \in \mathbb{R}^n$, and let F be a C^1 function mapping a neighborhood of a to \mathbb{R}^n , with DF(a) invertible. Then there exist a neighborhood W of a and a C^1 function $G: F(W) \to W$ such that G(F(x)) = xfor every $x \in U$ and F(G(y)) = y for every $y \in F(U)$.

Deduce the more general version from the reduced version by composing with strategically chosen mappings of the kind given in Examples II.6.1 and II.6.2.