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This note presents the main part of the inverse function theorem, following Theorem II.6.4 of
Boothby’s Introduction to Differentiable Manifolds and Riemannian Geometry and Theorem 1.1.7
of Hörmander’s Analysis of Linear Partial Differential Operators: Volume I. Questions, comments,
and corrections are gratefully received at kdatchev@purdue.edu.

Theorem. Let W ⊂ Rn be an open set and F : W → Rn a C` function for some ` ≥ 1. Suppose
DF (a) is invertible for some a ∈ W . Then there exists a neighborhood U of a such that F : U →
F (U) is a C` diffeomorphism.

Proof. Our proof is based on a contraction mapping argument. It is a general fact (see Theorem
II.6.5 of Boothby) that if T : X → X where X is a complete metric space, and if there is λ ∈ (0, 1)
such that d(T (x), T (y)) ≤ λd(x, y) for all x and y, then the equation x = T (x) has a unique solution
and for any x0 the sequence x0, T (x0), T (T (x0)), . . . converges to it. Our proof does not quote this
fact, but along the way proves a special case of it with λ = 1

2 and X a closed ball in Rn.

Step 1: Reduce to the case a = 0, F (0) = 0, DF (0) = I by composing with translations and linear
transformations. This is left as an exercise: see also Examples II.6.1 and II.6.2, and Lemma II.6.3,
of Boothby.

Step 2: In this step we find a neighborhood U of 0 such that F : U → F (U) is a bijection. Take y
with |y| ≤ r for some r > 0 to be determined, and define

x0 = 0, xk = y + xk−1 − F (xk−1).

Our goal is to choose r small enough that this sequence converges, because then the limit x∗ will
obey x∗ = y + x∗ − F (x∗) and hence solve F (x∗) = y. It makes sense that this should be possible
because, if |x| is small enough, then the conditions F (0) = 0 and DF (0) = I tell us that, roughly
speaking, F (x) ≈ x and so

xk − xk−1 = xk−1 − F (xk−1)− xk−2 + F (xk−2) ≈ 0

and we are in the setting of a contraction mapping. More precisely, we will arrange1 r > 0 such
that

|x|, |x̃| ≤ 2r =⇒ |x− F (x)− x̃+ F (x̃)| ≤ 1
2 |x− x̃|. (1)

Assume for the moment that there exists r > 0 such that (1) holds. Then, since |y| ≤ r, we have
|x1| ≤ r and

|xk − xk−1| = |xk−1 − F (xk−1)− xk−2 + F (xk−2)| ≤ 1
2 |xk−1 − xk−2|, (2)

for all k ≥ 2, and hence |xk| ≤ r + 1
2r + · · ·+ 21−kr ≤ 2r for all k. Thus, using (2) repeatedly,

∞∑
k=1

|xk − xk−1| ≤
∞∑
k=1

21−k|x1 − x0|

1The use of 1
2
in the right hand side of (1) corresponds to taking λ = 1

2
in the contraction mapping argument. One

could also replace this 1
2
by any number λ ∈ (0, 1), provided one accordingly adjusted the requirement |x|, |x̃| ≤ 2r.

If Step 2 appears mysterious, working that out might be a helpful exercise.



converges, and hence we may define

x∗ = lim
m→∞

xm = lim
m→∞

m∑
k=1

(xk − xk−1).

Next, x∗ solves F (x∗) = y, and the solution is unique because for any x̃ with |x̃| ≤ 2r which solves
F (x̃) = y, by (1) we have |x∗− x̃| ≤ 1

2 |x
∗− x̃|. So to complete Step 2, it remains to show that there

is r > 0 such that (1) holds.

To do that, recall the mean value bound

|x|, |x̃| ≤ 2r =⇒ |ψ(x)− ψ(x̃)| ≤ Kn|x− x̃|,

where K is the maximum of |∂iψj(x)| for |x| ≤ 2r and 1 ≤ i, j ≤ n; see Boothby Theorem 2.2. We
apply this with ψ(x) = x − F (x), and note that ∂iψ

j(0) = 0 for all i and j. Thus, since the ∂iψ
j

are continuous, if r is small enough we have Kn ≤ 1
2 , which implies (1).

Step 3. We now show the inverse map obtained in Step 2 is differentiable for r small enough. Let r
be as above, and if necessary shrink r so that DF (x) is invertible when |x| ≤ 2r: this can be done
because DF (0) = I and the determinant function is continuous. Write x = G(y) for |y| < r. For
|k| < r − |y|, put h = G(y + k)− x. By definition,

F (x+ h)− F (x) = DF (x)h+R(x, h)|h|,

where R(x, h)→ 0 as |h| → 0. Substituting F (x) = y, F (x+ h) = y+ k, and h = G(y+ k)−G(y),
and solving for G(y + k)−G(y), gives

G(y + k)−G(y) = DF (x)−1k −DF (x)−1R(x, h)|h|.

Thus to prove that G is differentiable, it remains to show that DF (x)−1R(x, h)|h|/|k| → 0 as
|k| → 0.

For this we observe that applying (1) with x̃ = x+h gives |h−k| ≤ 1
2 |h|, and hence 1

2 |h| ≤ |k| ≤
3
2 |h|.

That implies

lim
|k|→0

|DF (x)−1R(x, h)||h|/|k| ≤ 2 lim
|k|→0

|DF (x)−1R(x, h)| = 2 lim
|h|→0

|DF (x)−1R(x, h)| = 0.

Step 4. To show that G is C`, we show that DG is C`−1. This in turn follows from the fact that
DF is C`−1, together with Cramer’s formula: recall that, for any invertible matrix M , Cramer’s
formula expresses the entries of M−1 as rational functions of the entries of M , with nonvanishing
denominators.


