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This note presents basic definitions and examples concerning manifolds in a way that avoids men-
tioning general topology, following the approach of Section 33 of Arnold’s Ordinary Differential
Equations.

The notation and usage are set up to be as consistent as possible with Boothby’s Introduction to
Differentiable Manifolds and Riemannian Geometry. Compare with Definitions I.3.1 and III.1.2
there. Please email any comments or corrections to kdatchev@purdue.edu.

Definitions

Let M be a set. A coordinate neighborhood is a subset U ⊂M together with a one-to-one function
ψ : U → Rn such that ψ(U) is open.

Two coordinate neighborhoods ψα : Uα → Rn and ψβ : Uβ → Rn are C0 consistent or C0 compatible
if either Uα ∩ Uβ = ∅ or if the following two conditions hold:

1. The sets ψα(Uα ∩ Uβ) and ψβ(Uα ∩ Uβ) are open;

2. The functions ψα ◦ ψ−1β : ψβ(Uα ∩ Uβ)→ Rn and ψβ ◦ ψ−1α : ψα(Uα ∩ Uβ)→ Rn are C0.

A family U = {(Uα, ψα) | α ∈ A} of C0 consistent coordinate neighborhoods makes up a C0 atlas
if M =

⋃
α∈A Uα, i.e. if between them the coordinate neighborhoods cover M .

Two C0 atlases on M are C0 equivalent if their union is an atlas, i.e. if all the coordinate neigh-
borhoods are consistent.

A C0 atlas U on M is maximal, or complete, if any atlas equivalent to U is contained in U .

A C0 manifold structure is introduced on the set M if a maximal C0 atlas is prescribed. By
Theorem III.1.3 of Boothby1 it is enough to prescribe a non-maximal atlas.

A C0 manifold is a set M together with a C0 manifold structure on it.

A subset V ⊂M is open if ψ(V ∩ U) is open in Rn for every coordinate neighborhood (ψ,U).

If the number n above is the same for every coordinate neighborhood (and this turns out to always
be the case for connected manifolds) then it is called the dimension of the manifold.

At this point, two further conditions on M are imposed to rule out certain pathological examples.
The Hausdorff condition says that if x and y are any two distinct points on M , then there are

1or Lemma 1.35 of Lee’s Introduction to Smooth Manifolds, available electronically from the Purdue Library here:
https://purdue.primo.exlibrisgroup.com/permalink/01PURDUE_PUWL/ufs51j/alma99169167029201081

https://purdue.primo.exlibrisgroup.com/permalink/01PURDUE_PUWL/ufs51j/alma99169167029201081


disjoint open sets V and W in M such that x ∈ V and y ∈ W . The second countability condition
says that, if the atlas U is not already countable, then some atlas equivalent to it is countable.2

We define smoother manifolds by replacing C0 everywhere by Ck for some k ≥ 1, or k = ∞. One
can similarly consider real-analytic or complex-analytic manifolds. The regularity of the manifold
is given by the regularity of the transition functions ψα ◦ ψ−1β . Another term for C0 manifold is
topological manifold, and another term for C∞ manifold is smooth manifold.

Let M and M̃ be two manifolds. A function f : M → M̃ is C0 provided ψ̃◦f ◦ψ−1 : U → Ũ is C0 for
any coordinate neighborhoods (U,ψ) and (Ũ , ψ̃) on M and M̃ . The function is a homeomorphism
if it is invertible with C0 inverse. Similarly, we can define Ck functions provided both manifolds
are Ck. If a function and its inverse are both Ck, the function is a Ckdiffeomorphism, and a C∞

diffeomorphism is simply a diffeomorphism.

Examples

1. Let M = {(x, y, z) ∈ R3 | x2 + y2 = 1}. Define an atlas with two coordinate neighborhoods as
follows. Let U1 consist of the points in M with x < 1, and put ψ1(x, y, z) = (arg(x+ iy), z). Let U2

consist of the points in M with x > 0, and put ψ2(x, y, z) = (y, z). Then ψ2(ψ
−1
1 ((θ, z))) = (sin θ, z),

ψ1(ψ
−1
2 ((y, z))) = (sin−1 y, z) for y > 0, and ψ1(ψ

−1
2 ((y, z))) = (sin−1 y + 2π, z) for y < 0.

2. Define real projective space Pn(R) to be Rn+1 − {0} subject to the equivalence relation x ∼ y
when y = tx for some real number t. To define coordinate neighborhoods, for each point in Pn(R),
pick a representative (x1, . . . , xn+1) ∈ Rn+1−{0}. The definitions which follow will be independent
of the representative chosen. For each j ∈ {1, . . . , n+ 1}, let Uj = Pn(R) ∩ {xj 6= 0}, and let

ψ1(x1, . . . , xn+1) = (x2, . . . , xn+1)/x1,

ψ2(x1, . . . , xn+1) = (x1, x3, . . . , xn+1)/x2,

...

ψn+1(x1, . . . , xn+1) = (x1, x2, . . . , xn)/xn+1.

We abbreviate the above by writing ψj(x1, . . . , xn+1) = (x1, . . . , x̂j , . . . , xn+1).

Fix j and k in {1, . . . , n + 1} with j < k. Then ψk(Uj ∩ Uk) = {(y1, . . . , yn) ∈ Rn | yj 6= 0}. A
representative of ψ−1k (y1, . . . , yn) is (y1, . . . , yk−1, 1, yk, . . . yn), and so

ψj(ψ
−1
k (y1, . . . yn)) = (y1, . . . , ŷj , . . . , yk−1, 1, yk, . . . , yn)/yj .

This is a continuous map from ψk(Uj∩Uk) to Rn. A similar proof shows that ψk◦ψ−1j is continuous.

Thus the atlas {(Uj , ψj) | j ∈ {1, . . . , n+ 1}} defines a C0 manifold structure on Pn(R).

2It follows that any atlas has a countable subfamily which is also an atlas. To see this, first observe that hav-
ing a countable atlas implies that there is a countable basis of open sets, e.g. the preimages under the ψ’s
of open rectangles with rational coordinates, and second that hence every open cover has a countable sub-
cover (aka every second countable space is Lindelöf: see Theorem 30.3 of Munkres’ Topology or https://

math.stackexchange.com/questions/1742638/choice-of-chart-and-atlas and https://topospaces.subwiki.

org/wiki/Second-countable_implies_Lindelof.
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