
Interacting waves

In the notes on free waves [FW] we studied the basic equations

∂2t u(x, t)− c2∆u(x, t) = 0, i~∂tu(x, t) = − ~2

2m
∆u(x, t),

where x ∈ Rd is the spatial variable and t ∈ R is time. They represent well moderate waves in an

unvarying medium not subject to any forces beyond the ones used to derive the equations. As the

waves become less moderate (for example strong vibrations in the first case, or rapidly moving

electrons in the second case) or as changes in the medium or additional forces come into play, the

equations must be modified accordingly. In this part we study some of these modifications.

The simplest kind of modification is adding a potential energy term V (x)u(x, t), which in the

case of the wave quation gives

∂2t u(x, t)− c2∆u(x, t) + V (x)u(x, t) = 0.

For a vibrating string or membrane this corresponds to a force which is proportional to displace-

ment, with the constant of proportionality depending on the position. For an elastic restoring

force, this comes from Hooke’s law and V is positive.

The general Schrödinger equation is given by

i~∂tu(x, t) = − ~2

2m
∆u(x, t) + V (x)u(x, t), (1)

where V is the potential energy arising from forces on the particles represented by u.

Later we will consider more complicated and more general modifications as well, including

connections to other physical problems such as fluids, electromagnetic waves, and acoustic waves.

The Schrödinger equation of the seemingly simple form (1), for suitable choices of V , governs

very general physical systems, including many-body problems. To explain this, we recall our

derivation of (1) for a single particle moving in Euclidean space.

Let x ∈ R3 be the position and ξ ∈ R3 the momentum of such a particle, and let m > 0 be

its mass. Suppose it is subject to a force arising from a potential function V (x). The classical

Hamiltonian function

H(x, ξ) =
1

2m
|ξ|2 + V (x), (2)

gives the total energy (kinetic plus potential) of the particle at position x and momentum ξ.

The corresponding quantum Hamiltonian operator is obtained by multiplying by eix·ξ/~ and using

ξeix·ξ/~ = −i~∇eix·ξ/~ to get

H(x, ξ)eix·ξ/~ = H(x,−i~∇)eix·ξ/~,
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where

H(x,−i~∇) = − ~2

2m
∆ + V (x), (3)

and (3), applied to u(x, t), is the right hand side of (1).1 For a two-body system, the classical

Hamiltonian is

H(x, ξ) =
1

2m1
|ξ1|2 +

1

2m2
|ξ2|2 + V (x),

where x1, x2 ∈ R3 are the positions of the two particles, ξ1, ξ2 ∈ R3 are their momenta, m1, m2 >

0 are their masses, and we write x = (x1, x2) ∈ R6, and ξ = (ξ1, ξ2) ∈ R6. The corresponding

quantum Hamiltonian is

H(x,−i~∇) = − ~2

2m1
∆1 −

~2

2m2
∆2 + V (x),

and if we apply it to u(x, t) and make the simplifying assumption that the masses are equal we

get the right hand side of (1) again, but this time with x ∈ R6. Similarly, taking x ∈ R3N in

(1) gives an equation for N particles all having the same mass. In the case that there is no force

on the particles (non-interacting particles), we have V = 0 and (1) becomes the free Schrödinger

equation to which our results from Section 5 of the notes on free waves apply directly.

For a concrete example, take x ∈ R3 and V (x) = −1/|x| to study one electron interacting

with one proton. Here we are ignoring the movement and size of the proton (this is the Born–

Oppenheimer approximation) and V (x) is the Coulomb potential arising from the attractive

electric force between the electron and the proton. The simplest and most important solution in

this case is the one which has the form

u(x, t) = e−iEt/~e−|x|/R, (4)

for suitable energy E ∈ R and length scale R > 0. This is called the ground state of the electron

in the hydrogen atom. It is called a stationary state because the probability density |u(x, t)|2 is

independent of t. It is the state occupied by the electron when the atom is at rest.

Exercise 1. Use the fact that the Laplacian in polar coordinates on Rd is given by ∆ = ∂2r +
d−1
r ∂r + 1

r2
∆Sd−1 , where ∆Sd−1 is an appropriate differential operator in the angular variables

(the Laplacian on the unit sphere) to find E and R such that (4) solves (1) with x ∈ R3 and

V (x) = −1/|x|.

The hydrogen atom is the simplest and most important atom. If we move on to the next one

up, the helium atom, the corresponding form of V is

V (x) =
1

|x1 − x2|
− 2

|x1|
− 2

|x2|
,

and there is no longer any simple formula for the ground state or for any other state. More

generally, we may consider a system of N electrons in a molecule made up of M atoms. Then the

corresponding form of V is

V (x) =
∑

1≤j<k≤N

1

|xj − xk|
−

N∑
j=1

M∑
`=1

Z`
|xj −X`|

,

1See Section 5 of [FW] and the Further Discussion and References there for more on this.
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where Xk is the position of the kth nucleus and Zk is the number of protons it has. The problem

of finding good ways to analyze such a system, and particularly to calculate its ground state

energy to reasonable accuracy, has been a very important one, going back to the time it was first

able to be formulated and right down to the present day.

An operator of the form (3) is called a Schrödinger operator. We begin our study of them

with the simplest one, the harmonic oscillator. It is important both as a concrete example where

the results and formulas are fairly explicit and simple, and as a tool in the analysis of the more

complicated problems we will consider afterwards.

1. Harmonic Oscillator. The harmonic oscillator potential energy function is V (x) = 1
2k|x|

2,

where k > 0. The classical equations of motion are given by Newton’s law md2x
dt2

= −∇V (x) =

−kx, and they are solved by x(t) = A cos(
√
k/mt)+B sin(

√
k/mt). This is the classical harmonic

oscillator problem. It describes small oscillations about a nondegenerate stable equilibrium, such

as those of a pendulum or spring.

The corresponding quantum problem is

i~∂tu(x, t) = Hu(x, t) = − ~2

2m
∆u(x, t) +

1

2
k|x|2u(x, t). (5)

We begin by finding the stationary states, and then construct general solutions as superpositions

of those. To make the calculations as simple as possible we begin with dimension d = 1 and we

take ~ = 1, m = 1/2, and k = 2.

We find the stationary states by solving the eigenvalue equation

Hun = −u′′n(x) + x2un(x) = Enun(x). (6)

Then e−itEnun(x) solves (5), and cos(t
√
En)un(x) and sin(t

√
En)un(x) solve the corresponding

wave equation (∂2t − ∂2x + x2)u(x, t) = 0. The word stationary comes from the fact that if

u(x, t) = e−itEnun(x), then the probability density |u(x, t)|2 is independent of t, and so in that

sense a particle in a stationary state does not move.

To solve (6) we use a variant of the factorization technique we used for the free wave equation

(∂2t − ∂2x)u(x, t) = (∂t + ∂x)(∂t − ∂x)u(x, t). We have the almost-factorizations

(− d2

dx2
+ x2)un = (− d

dx + x)( d
dx + x)un + un, (7)

and

(− d2

dx2
+ x2)un = ( d

dx + x)(− d
dx + x)un − un. (8)

These are based on the almost-commutativity property d
dxxun−x

d
dxun = un; the operator on the

left d
dxx−x

d
dx is the commutator of the operators d

dx and x and it measures how far away the two

operators are from commuting with one another.

The simplest solution to (6) is given by using (7) and solving ( d
dx + x)u0 = 0. That leads to

u0(x) = e−x
2/2, E0 = 1. (9)

This is called the ground state, because it has the lowest energy of any state: as we shall see

momentarily the other eigenfunctions un have eigenvalues En which are greater than this one.
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Applying (− d
dx + x) to (8) and using (7) gives

(− d
dx +x)Hun = (− d

dx +x)( d
dx +x)(− d

dx +x)un− (− d
dx +x)un = H(− d

dx +x)un− 2(− d
dx +x)un.

If un is an eigenfunction with Hun = Enun, then this becomes

En(− d
dx + x)un = H(− d

dx + x)un − 2(− d
dx + x)un.

We accordingly define recursively

un+1 = (− d
dx + x)un, En+1 = En + 2. (10)

The formulas (9) and (10) define the sequence of eigenfunctions of the harmonic oscillator. They,

and their corresponding eigenvalues, have the form

un(x) = Hn(x)e−x
2/2, En = 2n+ 1,

where

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, (11)

and more generally Hn(x) is a polynomial of degree n with leading coefficient 2n. These polyno-

mials are called the Hermite polynomials.

Exercise 2. What do we get if, instead of applying (− d
dx + x) to (8) and using (7), we apply

( d
dx + x) to (7) and used (8)? What is the analog of (10) then? How does the resulting sequence

of eigenfunctions and eigenvalues simplify?

Exercise 3. Find c (depending on ~, k, m) such that vn(x) = un(cx) solves − ~2
2mv

′′
n(x) +

1
2kx

2vn(x) = Ẽnvn(x) for some Ẽn, and also find Ẽn.

The functions un are mutually orthogonal because H is symmetric: we have

En

∫
umun =

∫
umHun =

∫
unHum = Em

∫
unum,

and hence

n 6= m =⇒ En 6= Em =⇒
∫
umun = 0.

We define a corresponding orthonormal set of eigenfunctions by putting

ϕn(x) = un(x)/
√∫

u2n

These eigenfunctions form a complete set in the sense that nothing is orthogonal to all of them:

if v is any function in L2(R) such that
∫
vϕn = 0 for every n then v = 0. To prove this, note

that if
∫
vϕn = 0 for every n, then

∫
v(x)p(x)e−x

2/2dx = 0 for any polynomial p because any

polynomial p can be written as a linear combination of Hermite polynomials, and so2∫
v(x)e−x

2/2e−ixξdx =
∞∑
k=0

∫
v(x)e−x

2/2 (−ixξ)k

k!
dx = 0,

and hence the Fourier transform of v(x)e−x
2/2 is zero, which implies v = 0.

2To justify switching the order of the integral and sum, use the absolute convergence test, which says that∑∞
k=0

∫
fk =

∫ ∑∞
k=0 fk provided

∑∞
k=0

∫
|fk| converges. See e.g. [Fol, Theorem 2.25].
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Theorem 1. For any v ∈ L2(R), we have

v =
∞∑
n=0

cnϕn, where cn = 〈v, ϕn〉,

in the sense that

lim
N→∞

∥∥∥v − N∑
n=0

cnϕn

∥∥∥ = 0. (12)

Moreover, we have the following infinite-dimensional version of the Pythagorean theorem:

‖v‖2 =

∞∑
n=0

|cn|2. (13)

Conversely, for any sequence of complex numbers c0, c1, . . . such that
∑
|cn|2 converges, there is

a unique v ∈ L2(R) with the above properties.

We are using here the L2 inner product 〈f, g〉 =
∫
fḡ and corresponding norm ‖f‖ =

√
〈f, f〉.

The proof only uses the fact that L2(R) is a Hilbert space with respect to this inner product (i.e.

it is complete) and the fact that the ϕn form a complete orthonormal set, and thus works for any

complete orthonormal set in any Hilbert space.

In words, (12) says that the partial sums
∑N

n=0 cnϕn converge to v in the L2 sense, or in the

Hilbert space, and (13) says that the length squared of v is equal to the sum of the lengths squared

of its components (just like the length squared of the hypotenuse of a right triangle is the sum of

the lengths squared of its legs).

Proof. We begin by looking for coefficients cn which minimize the L2-distance from v to
∑
cnϕn.

To do so we write∥∥∥v − N∑
n=0

cnϕn

∥∥∥2 = ‖v‖2 −
N∑
n=0

cn〈v, ϕn〉 − cn〈ϕn, v〉+
N∑
n=0

|cn|2

= ‖v‖2 −
N∑
n=0

|〈v, ϕn〉|2 +

N∑
n=0

∣∣cn − 〈v, ϕn〉∣∣2,
(14)

where for the first equality we expanded ‖v − w‖ = ‖v‖2 − 〈v, w〉 − 〈w, v〉 + ‖w‖2, and for the

second we completed the square using |cn − z|2 = |cn|2 − cnz̄ − cnz + |z|2. The identity (14) is

valid for any constants cn, but to minimize it we take cn = 〈v, ϕ〉, giving∥∥∥v − N∑
n=0

cnϕn

∥∥∥2 = ‖v‖2 −
N∑
n=0

|cn|2, where cn = 〈v, ϕn〉.

This shows that
∑∞

n=0 |cn|2 ≤ ‖v‖2 and in particular the sum converges. Hence the Cauchy

convergence criterion is satisfied: for every ε > 0 there is M such that if M ≤ N1 ≤ N2

then ‖
∑N2

n=N1
cnϕn‖2 =

∑N2
n=N1

|cn|2 < ε, and it follows3 that there is w ∈ L2(R) such that

3See e.g. Theorem 6.6 in [Fol] for the completeness of L2.
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limN→∞

∥∥∥w −∑N
n=0 cnϕn

∥∥∥ = 0. By the completeness of the eigenfunctions to finish the proof it

is enough to show that 〈w − v, ϕm〉 = 0 for every m. For that we write

〈w − v, ϕm〉 =
〈
w −

N∑
n=0

cnϕn, ϕm

〉
+
〈 N∑
n=0

cnϕn − v, ϕm
〉
, (15)

and observe that the second inner product vanishes when N ≥ m because 〈v, ϕm〉 = cm and the

ϕn are orthonormal, while the first obeys4∣∣∣〈w − N∑
n=0

cnϕn, ϕm

〉∣∣∣ ≤ ∥∥∥w − N∑
n=0

cnϕn

∥∥∥→ 0 as N →∞,

and since the left hand side of (15) is independent of N it must be zero for all m.

For the converse, again use the fact that the Cauchy criterion is satisfied together with the

completeness of L2. �

We have shown that L2(R) has a countable complete orthonormal set, namely the ϕn, and this

important property is called separability. Now we use this orthonormal set to solve the quantum

harmonic oscillator problem.

Theorem 2. Let f ∈ L2(R), cn =
∫
fϕn, En = 2n+ 1. Then

u(x, t) =

∞∑
n=0

cne
−iEntϕn(x)

solves

i∂tu(x, t) = −∂2xu(x, t) + x2u(x, t), u(x, 0) = f(x), (16)

in the sense of distributions.

Proof. Put uN (x, t) =
∑N

n=0 cne
i(2n+1)tϕn(x). Then i∂tuN (x, t) = −∂2xuN (x, t) + x2uN (x, t), and

we want to take the limit as N → ∞ of each term of this equation, justifying passing the limit

through the ∂t, ∂
2
x, and x2 operators.

From Theorem 1 we know that uN → u in L2. To see that uN → u in S ′ (i.e. in the sense of

distributions), take ϕ ∈ S, and apply Cauchy–Schwarz and the L2 convergence theorem (12) to

obtain ∣∣∣ ∫ (u(x, t)− uN (x, t))ϕ(x)dx
∣∣∣ ≤ ‖u(x, t)− uN (x, t)‖‖ϕ‖ → 0, as N →∞. (17)

We show that x2uN → x2u in S ′ by applying (17) with ϕ(x) replaced by x2ϕ(x), and then

∂2xuN → ∂2xu in S ′ by applying (17) with ϕ replaced by ϕ′′.

It remains to show that ∂tuN → ∂tu in S ′. We use the fact that the coefficients 〈ϕ,ϕn〉 are

rapidly decaying in n. More specifically, for any k, using H = −∂2x+x2 and En = 2n+ 1, we have

|〈ϕ,ϕn〉| =
∣∣∣ ∫ ϕϕn

∣∣∣ = E−kn

∣∣∣ ∫ ϕHkϕn

∣∣∣ = E−kn

∣∣∣ ∫ (Hkϕ)ϕn

∣∣∣ ≤ E−kn ‖Hkϕ‖. (18)

4This is the Cauchy–Schwarz inequality |〈f, ϕm〉| ≤ ‖f‖, which follows from (14) in the form ‖f − cmϕm‖2 =

‖f‖2 − |〈f, ϕm〉|2 + |cm − 〈f, ϕm〉|2. Indeed, putting cm = 〈f, ϕm〉 and using 0 ≤ ‖f − cmϕm‖2 gives 0 ≤ ‖f‖2 −
|〈f, ϕm〉|2 which is equivalent to |〈f, ϕm〉| ≤ ‖f‖.
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We have ∫
∂tuN (x, t)ϕ(x)dx = −

N∑
n=0

iEncne
−iEnt〈ϕ,ϕn〉,

and so, by (18) with k = 3, ∂tuN converges in S ′ to
∑∞

n=0 iEncne
−iEntϕn(x). On the other hand

∂tu[ϕ] = ∂t

∞∑
n=0

cne
−iEnt〈ϕ,ϕn〉 = lim

h→0

∞∑
n=0

cn
h

(e−iEn(t+h) − e−iEnt)〈ϕ,ϕn〉

By |e−iEnh− 1| = |
∫ Enh
0 e−isds| ≤ Enh and (18) with k = 3 the terms of the sum are bounded by

|cn|En|〈ϕ,ϕn〉|, and hence the sum is absolutely uniformly convergent and we may interchange

the sum and limit to obtain

∂tu[ϕ] = −
∞∑
n=0

iEncne
−iEnt〈ϕ,ϕn〉 = lim

N→∞
∂tuN [ϕ],

and hence ∂tuN → ∂tu in S ′. �

Exercise 4. Let f be the characteristic function of an interval, and plot (for example using

www.desmos.com) the real and imaginary parts of uN (x, t), i∂tuN (x, t), and ∂2xuN (x, t) for a few

small values of t including t = 0, for some value of N large enough that the neglected terms are

reasonably small.

Exercise 5. Prove the analog of Theorem 2 for the wave equation

∂2t u(x, t)− ∂2xu(x, t) + x2u(x, t) = 0, u(x, 0) = f(x), ∂tu(x, 0) = g(x),

where f and g are in L2.

Exercise 6. Let I be an open interval containing 0, let cn : I → C be differentiable functions.

Suppose that there are constants C and K such that |c(t)|+ |c′(t)| ≤ C(1 + |n|)K for all t ∈ I and

all n. Use (18) to prove that ũ(x, t) =
∑∞

n=0 cn(t)ϕn(x) defines a distribution in x for every t. Use

the method of proof of Theorem 2 to show that if ũ(x, t) solves (16) in the sense of distributions,

then cn(t) = cne
−iEnt, where cn = 〈f, ϕn〉.

For every t, we denote the operator taking f to u at time t in Theorem 2 by e−iHt. By

Theorem 1, this a unitary operator (i.e. an isometry) on L2(Rd), meaning ‖e−iHtf‖ = ‖f‖ for

any f . More generally given any function a : R→ C, we define

a(H)f =

∞∑
n=0

cna(En)ϕn(x), where cn =

∫
fϕn. (19)

We also write this as

a(H) =

∞∑
n=0

a(En)(ϕn ⊗ ϕn), (20)

where we use the notation (u⊗v)f = u〈f, v〉. Observe that (ϕn⊗ϕn) is the orthogonal projection

onto the eigenspace with eigenvalue En.

A mapping from functions of a real (or complex) variable to functions of an operator is called

a functional calculus. If a is the constant function 1, then a(H) = I is the identity operator I and

the equation I =
∑∞

n=0(ϕn ⊗ ϕn) is the resolution of the identity corresponding to H; it is just

www.desmos.com
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the decomposition of L2 into the eigenspaces of H. In terms of Dirac’s bra and ket notation we

write 1 =
∑∞

n=0 |ϕn〉〈ϕn|.
If a is bounded then, by Theorem 1, a(H) maps L2 → L2 and we have

‖a(H)‖L2→L2 = sup
n
|a(En)|, (21)

where we use the definition of the operator norm

‖a(H)‖L2→L2 = sup
f∈L2 : ‖f‖=1

‖a(H)f‖L2 .

In words, we say that a(H) is then a bounded operator on L2, with operator norm given

by the least upper bound of the magnitudes of its values on the eigenvalues. For example,

‖e−itH‖L2→L2 = 1 for all t.

Exercise 7. Use (19) and the definition of supremum to verify (21).

Exercise 8. In the setting of Exercise 5, what two operators are the analogs of e−iHt? What

can you say about their norms?

If a is not bounded, we still use the same definition, even though the mapping properties of

a are more complicated. Observe that, as we showed in Theorem 2, if a is the identity function

(a(x) = x) then defining Hf by (19) is equivalent to defining Hf in the sense of distributions,

and more generally if a is a polynomial then (19) agrees with the definition of a(H)f in the sense

of distributions.

The d-dimensional solution is built directly out of the 1-dimensional one. Let

H = −∆ + |x|2,

and consider a multiindex α = (α1, · · · , αd), a d-tuple of nonnegative integers. Put |α| = α1 +

· · ·+ αd. Then put

uα(x) = uα1(x1) . . . uαd
(xd),

which gives

Huα = Eαuα, Eα = 2|α|+ d. (22)

Exercise 9. Let ϕα = uα/‖uα‖. Prove that the ϕα are an orthonormal basis for L2(Rd); i.e.

they are an orthonormal set such that if v ∈ L2 is orthogonal to every ϕα then v = 0.

Exercise 10. Let k be a nonnegative integer. Find the multiplicity of k as an eigenvalue of H,

as a function of d and k, at least for some small values of d and/or k; this is the dimension of the

space of u ∈ L2(Rd) such that Hu = ku.

Exercise 11. The operator H commutes with rotations: if M is any orthogonal matrix on Rd
and we define RMu(x) = u(Mx), then RMH = HRM . Find a joint basis of eigenfunctions

for H and RM , for at least one choice of M . The easiest one is Mx = −x. Other relatively

simple examples include reflections around a hyperplane and rotations about an axis. For any

family of mutually commuting rotations there is a joint eigenbasis for all of them. When d = 2,

you can use polar coordinates to handle rotations having einθ as an eigenfunction for any n:

Meinθ = ein(θ+α) = einαeinθ; the higher-dimensional analogs of this lead to the theory of spherical
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harmonics. The spherical harmonics are the eigenfunctions of ∆Sd−1 , the Laplacian on the unit

sphere (see Exercise 1).

Exercise 12. Find the eigenvalues of ∆Sd−1 for d = 2 (see Exercise 1), for the Hilbert space

L2([0, 2π]). Find two bases for each eigenspace, one consisting of complex exponentials and one

consisting of real-valued functions.

Exercise 13. The operator H also commutes with the Fourier transform. Use this to find the

eigenvalues of the Fourier transform and a corresponding basis of eigenfunctions.

Another important characterization of the eigenvalues and eigenfunctions is as follows: for

z ∈ C \ {d, d+ 2, d+ 4, . . . }, define the resolvent (H − z)−1 : L2(Rd)→ L2(Rd) by the eigenbasis

functional calculus (19) or (20) with a(x) = (x − z)−1. The resolvent has many nice properties.

For one it is bounded on L2, even though H is not. For another (as we will discuss in more detail

in Section 2) it depends holomorphically on z.5

Exercise 14. Check that z 7→ 〈(H − z)−1f, g〉 is holomorphic by term-by-term differentiation of

the series defining it, or by expanding each (Eα − z)−1 in that series into a geometric series.

To characterize the eigenfunctions using the resolvent, we write it out as follows. For any

nonnegative integer k, by the eigenbasis functional calculus (20) we have

(H − z)−1 =
∞∑
α

(Eα − z)−1(ϕα ⊗ ϕα)

=
−1

z − zk

∑
|α|=k

(ϕα ⊗ ϕα) +Bk(z),

where zk = 2k + d and Bk(z) is a holomorphic family of operators near zk. Thus the residue of

(H − z)−1 at zk is −Πzk , i.e. minus the projection onto the eigenspace with eigenvalue zk. With

the convention that Πw = 0 when w ∈ C is not a point of the spectrum of H, by the residue

theorem we thus have

Πw =
i

2π

∫
Cw

(H − z)−1dz,

where Cw is piecewise smooth simple closed curve6 in the complex plane enclosing w and no points

of the spectrum of H besides w. More generally if C is the boundary of a region D ⊂ C , then
i
2π

∫
C(H − z)−1dz is the projection onto the eigenspaces whose eigenvalues lie within D.

For more complicated operators than the harmonic oscillator, it is often easier and better to

work with the resolvent than with the eigenvectors and eigenvalues. Among other things, the

eigenvectors do not always form a complete set (see for example Exercise 16 below).

5This means z 7→ 〈(H − z)−1f, g〉 is holomorphic for any f and g in L2. See Section 4.2.2 of [Bor], especially

Theorem 4.8, for more on this.
6See Section 1.6 of [Fis] for more on such curves.
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2. The Resolvent. Let H be a differential operator on Rd, and let z ∈ C. Suppose that, for

every f ∈ L2(Rd), there is a unique u ∈ L2(Rd) such that (H − z)u = f , and moreover that there

is a constant C (depending on H and z but not on f and u) such that ‖u‖L2(Rd) ≤ C‖f‖L2(Rd).

Then we note the operator mapping f to u by (H − z)−1f . This operator is called the resolvent.

The best possible constant C is denoted ‖(H − z)−1‖L2→L2 .

Exercise 15. Check that for the harmonic oscillator H = −∆+|x|2 this definition of the resolvent

(−∆ + |x|2 − z)−1 agrees with the one from Section 1. Compute ‖(−∆ + |x|2 − z)−1‖L2→L2 in

terms of the distance from z to the set of eigenvalues {d, d+ 2, d+ 4, . . . }.

The range of the resolvent is denoted D, the domain of H as an unbounded operator on

L2(Rd). It can be difficult to compute D, but we always know that Hu ∈ L2 for all u ∈ D
(because Hu = zu + f) and this is enough for many purposes. We now prove that D does not

depend on z.

Theorem 3. Suppose H − z1 is bijective D1 → L2(Rd) and H − z2 is bijective D2 → L2(Rd).
Then D1 = D2.

Proof. We factor the difference:

(H − z1)−1 − (H − z2)−1 = ((H − z1)−1(H − z2)− I)(H − z2)−1

= (H − z1)−1(H − z2 − (H − z1))(H − z2)−1

The right hand side maps L2 into D1, and the first term on the left does too. Hence (H − z2)−1
maps L2 into D1. That shows D2 ⊂ D1. By symmetry, D1 ⊂ D2. �

The set of values of z where the resolvent is defined is called the resolvent set, and its comple-

ment (the set where the resolvent is not defined) is called the spectrum. The spectrum includes

the set of all L2 eigenvalues: these are the z for which H − z is not injective.7 For the harmonic

oscillator the set of L2 eigenvalues equals the spectrum, but for other problems the spectrum can

include more, as in the following example.

Example 1. Consider the free Laplacian H = −∆. Given f ∈ L2(Rd) and z ∈ C we can solve

(−∆ − z)u = f for u if and only if we can solve (|ξ|2 − z)û = f̂ , i.e. z is in the resolvent set

if and only if the mapping f̂ 7→ (|ξ|2 − z)−1f̂ is bounded on L2, i.e. if and only if the function

ξ 7→ (|ξ|2 − z)−1 is bounded. That shows that the spectrum of −∆ is given by [0,∞). This kind

7If V is a finite-dimensional vector space, then a linear map A : V → V is injective if and only if it is surjective

(and hence if and only if it is invertible). This is sometimes called the fundamental theorem of linear algebra: see

Corollary 1.3.7 of [Tay]. For infinite dimensional spaces this is not so. For example, consider the left and right

shift operators on sequences, given by L(a1, a2, . . . ) = (a2, a3, . . . ) and R(a1, a2, . . . ) = (0, a1, a2, . . . ). Then L is

surjective but not injective, and R is injective but not surjective. Moreover LR = I, so L is a left inverse for R and

R is a right inverse for L. But L has no left inverse and R has no right inverse.

If you are interested in going deeper into these issues, do the following exercise. Consider L and R as bounded

operators on `2(N), the Hilbert space of sequences a1, a2, . . . such that
∑
|an|2 converges, with norm given by√∑

|an|2. Compute the spectrum of R, and for each point z of the spectrum see if you can determine whether

R − z is injective, surjective, both, or neither. Then do the same for L. (For some points of the spectrum this is

easier than for others.)
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of spectrum is called continuous spectrum, in contrast to the discrete spectrum of the harmonic

oscillator which is given by {d, d+ 2, d+ 4, . . . }; see Figure 1.

Figure 1. The spectra of the harmonic oscillator −∆+ |x|2 and of the free Lapla-

cian −∆.

For more general operators the spectrum can have a more complicated structure than for the

simple examples of the free Laplacian and the harmonic oscillator, but we will see that typically

it consists of some combination of continuous and discrete components.

Exercise 16. Use Fourier transformation to prove that the domain D of the free Laplacian −∆

equals the Sobolev space H2(Rd),8 and that (−∆−z) : H2(Rd)→ L2(R2) is injective for all z ∈ C;

i.e. −∆ has no L2 eigenvalues.

Exercise 17. In (19) and (20) we gave a formula for a(− d2

dx2
+ x2) as a superposition of terms

parametrized by the spectrum of the harmonic oscillator. For the free Laplacian we have a formula

which is in many ways analogous given by the Fourier integral

a(−∆)f(x) =
1

(2π)d

∫
Rd

eixξa(|ξ|2)
∫
Rd

e−iyξf(y) dy dξ.

Bring this formula to a form more closely analogous to (19) in the case d = 1 by manipulating it

to find functions e1(x, ρ) and e2(x, ρ) such that

a(− d2

dx2
)f(x) =

∫ ∞
0

a(ρ)
([ ∫

R
f(y) e1(y, ρ) dy

]
e1(x, ρ) +

[ ∫
R
f(y) e2(y, ρ) dy

]
e2(x, ρ)

)
dρ.

Because of the two terms e1 and e2 one sometimes says that the spectrum of − d2

dx2
is [0,∞) with

multiplicity 2. Note the analogy with the corresponding formula for the d-dimensional harmonic

oscillator

a(−∆ + |x|2)f(x) =
∞∑
n=0

a(2n+ d)
∑

α : |α|=n

[ ∫
f(y)ϕα(y) dy

]
ϕα(x);

here the spectrum is made up of the eigenvalues {d, d + 2, d + 4, . . . } and the multiplicity of the

eigenvalue d+ 2n is equal to the number of multiindices α such that |α| = n. See also Exercises

9 and 10 and the paragraph preceding them.

8See Section 6 of [FW].
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Exercise 18. Prove that, in the notation of (20), (22), and Exercise 9, the domain D of the

harmonic oscillator H = −∆ + |x|2 equals the set of f ∈ L2(Rd) such that
∑

α |Eα|2|〈f, ϕα〉|2
converges.

We now prove that the resolvent has the further important property of being holomorphic.

This means that it can be expanded into a power series in z near each point where it is defined.

Theorem 4. Given any w in the resolvent set of H, there is a disk D centered at w, disjoint

from the spectrum of H, such that (H − z)−1 is given by a convergent power series in D.

Proof. Given z ∈ C, we try to invert (H − z) by using (H −w)−1 as an approximate inverse. (An

approximate inverse is sometimes called parametrix.) Write

(H − z)(H − w)−1 = I − (z − w)(H − w)−1.

Let D be the set of z such that |z −w| < 1/‖(H −w)−1‖L2→L2 . Then for z ∈ D we can solve for

(H−z)−1 by a geometric series, since
∑∞

n=0A
n converges to (I−A)−1 when ‖A‖ < 1. That proves∑∞

n=0Cn(z − w)n with Cn = (H − w)−n−1 is a right inverse for (H − z). The same calculation

for (H − w)−1(H − z) shows it is a left inverse, and hence H − z is invertible with

(H − z)−1 =
∞∑
n=0

Cn(z − w)n, Cn = (H − w)−n−1,

for all z ∈ D, as desired. �

Note that by Theorem 4, the resolvent set is open and the spectrum is closed.

Exercise 19. Use the method of proof of Theorems 3 and 4 to show that d
dz (H−z)−1 = (H−z)−2.

3. Decaying potentials. In this section we will conisder Schrödinger operators H = −∆ + V ,

where V (x) → 0 as |x| → ∞. We start by assuming that V is bounded, but later relax this

assumption so as to be able to handle the Coulomb potential, as discussed in Exercise 1 above

and in the paragraph preceding it.

Our first important milestone in the study of H is the construction of the resolvent (H − z)−1
for certain values of z.

Theorem 5. Let H = −∆+V , where V = V (x) is a bounded function on Rd. Then the resolvent

set of H is not empty.

Proof. We follow the approach of the proof of Theorem 4. Given z ∈ C, we try to invert (H − z)
by using (−∆− z)−1 as an approximate inverse. Write

(H − z)(−∆− z)−1 = I + V (−∆− z)−1.

If ‖V (−∆− z)−1‖L2→L2 < 1, then we can use a geometric series to write

(H − z)(−∆− z)−1
∞∑
n=0

(−1)n(V (−∆− z)−1)n = I,
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and thereby obtain a right inverse for H − z. We will check that this works for z far enough away

from the positive real axis. Our first step is observing that

‖V (−∆− z)−1‖L2→L2 ≤ ‖V ‖L2→L2‖(−∆− z)−1‖L2→L2 .

Next we have

‖V ‖L2→L2 ≤ sup |V |,

because ∫
|V u|2 ≤ sup |V |2

∫
|u|2.

Thus it is enough to have

‖(−∆− z)−1‖L2→L2 < 1/ sup |V |.

To control ‖(−∆− z)−1‖L2→L2 we recall Plancherel’s theorem: ‖u‖L2 = (2π)−d/2‖û‖L2 . Thus we

have

‖u‖ = (2π)−d/2‖û‖ = (2π)−d/2‖(|ξ|2−z)−1f̂‖ ≤ sup
ξ

(|ξ|2−z)−1(2π)−d/2‖f̂‖ = sup
ξ

(|ξ|2−z)−1‖f‖,

and so we get that ‖(−∆ − z)−1‖L2→L2 goes to 0 for z � −1. In particular if z is real and

sufficiently negative, then z is in the resolvent set. �

Thus we have constructed (H − z)−1 when H = −∆ + V with V a bounded function on Rd,
when z � −1. Using the exercise below, the construction extends to all values of z in a domain

given by the exterior of the shaded region in Figure 2.

Figure 2. When V is a bounded function on Rd, the construction of the resolvent

(H − z)−1 by geometric series succeeds in the exterior of the shaded region.

Exercise 20. Given a bounded function V , find the set of z ∈ C such that

sup
ξ∈Rd

∣∣∣ 1

|ξ|2 − z

∣∣∣ < 1

sup |V |
.

Hint: Consider separately the cases Re z ≤ 0 and Re z ≥ 0.
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Exercise 21. In the course of the proof of Theorem 5 we showed that ‖V ‖L2→L2 ≤ sup |V |. Show

that, if V is continuous and sup |V | is attained, then ‖V ‖L2→L2 ≥ sup |V |. One way to do this

is to compute limn→∞
∫
|V un|2 for un(x) = π−d/4nd/2e−n

2|x−xn|2/2, where xn is a sequence in Rd
converging to a point x∗ such that |V (x∗)| = sup |V |. If you know the definition, you can also

show that ‖V ‖L2→L2 equals the essential supremum of |V |, in the case where V is bounded and

measurable but not necessarily continuous.

We will now show that if additionally V (x) → 0 as |x| → ∞, then (H − z)−1 extends mero-

morphically to C \ [0,∞) with poles where H has L2 eigenvalues. Note that any such eigenvalues

must be on the real axis if V is real, because if Hu = Eu then

E

∫
|u|2 =

∫
(−∆u+ V u)ū =

∫
(−∆u+ V u)u = Ē

∫
|u|2,

and also in that case E ≥ inf V because

E

∫
|u|2 =

∫
(−∆u+ V u)ū =

∫
|∇u|2 + V |u|2 ≥

∫
V |u|2 ≥ (inf V )

∫
|u|2.

Exercise 22. Let V : Rd → C be bounded, and let A ⊂ C be the range of V . What can you say

about the locations of possible L2 eigenvalues of H, in terms of A?.

The above follows from the following:

Theorem 6. Let V = V (x) be a bounded function on Rd such that V (x)→ 0 as |x| → ∞. Then

(I+V (x)(−∆−z)−1)−1 : L2(Rd)→ L2(Rd) is a meromorphic family of operators on z ∈ C\[0,∞)

and I + V (x)(−∆− z)−1 has L2 eigenvalues at any poles.

Recall that a meromorphic function is a quotient of holomorphic functions, for example a

rational function or z 7→ tan z. In anaolgy with our definition of a holomorophic family of

operators, we say that a family z 7→ K(z) of operators is meromorphic if z 7→ 〈f,K(z)g〉 is

meromorphic for each f and g.

Theorem 6 is a consequence of Theorems 7 and 8.

Theorem 7. Let V = V (x) be a bounded function on Rd such that V (x)→ 0 as |x| → ∞. Then

V (x)(−∆−z)−1 is a compact operator on L2(Rd) for each z ∈ C\[0,∞). This means that for any

such z and any ε > 0 there is a finite rank operator F such that ‖V (x)(−∆−z)−1−F‖L2→L2 < ε.

Recall that the rank of an operator is the dimension of its range, and so a finite rank operator is

one which has a finite-dimensional range. The basic example is the tensor product u 7→ (f⊗g)u =

f〈u, g〉, which is the same thing as the orthogonal projection onto the span of ϕ when f = g = ϕ

is a unit vector. The finite rank operators and compact operators are both subspaces of L2(Rd),
with the latter being the closure of former.

Theorem 8. Let z 7→ K(z) be a holomorphic family of compact operators on L2(Rd) (or more

generally on any separable Hilbert space) for z ∈ Ω, where Ω ⊂ C is a connected open set. If

I −K(z0) is invertible for any z0 ∈ C, then (I −K(z))−1 (which exists in a neighborhood of z0
by Theorem 4) extends to a meromorphic family of operators for z ∈ Ω. Moreover any z ∈ Ω is a

pole of (I −K(z))−1 if and only if I −K(z) has nullspace in L2(Rd).
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Theorem 8 is called the analytic Fredholm theorem.

Proof of Theorem 8. Let D ⊂ Ω be a disk such that ‖K(z) −K(z′)‖ < 1/2 for any z and z′ in

D. Suppose there is z′ ∈ D such that I −K(z′) is invertible, and pick a finite rank F such that

‖K(z′)− F‖ < 1/2, so that z 7→ (I −K(z) + F )−1 is holomorphic for z ∈ D. Then

(I −K(z))(I −K(z) + F )−1 = I −G(z), where G(z) = F (I −K(z) + F )−1.

Thus I−K(z) is invertible if and only if I−G(z) is, i.e. if and only if u−G(z)u = f has a unique

solution for every f . Since G(z) has finite rank, we see that any solution u must be close to f ,

and so we substitute u = f + v. Then solving u−G(z)u = f is equivalent to solving

v = G(z)(f + v). (23)

Any solution v must be in the range of F , i.e. of the form v =
∑N

n=1 cn(z)ϕn, where {ϕ1, . . . , ϕN}
is an orthonormal basis of the range of F . Inserting this into (23) and pairing both sides with ϕm
gives

cm(z) =
〈
G(z)

(
f +

∑N
n=1 cn(z)ϕn

)
, ϕn

〉
= 〈G(z)f, ϕm〉+

∑N
n=1〈G(z)ϕn, ϕm〉cn(z),

for m = 1, . . . N. (24)

By assumption, this system of N linear equations in N unknowns is solvable for at least one value

of z (namely z = z′). Hence, by Cramer’s formula from linear algebra, it defines a meromorphic

function z 7→ cn(z) for each n, for z ∈ D. Moreover, poles occur precisely at values of z for which

the system (24) has a nontrivial solution with f = 0, i.e. at values of z for which u−G(z)u = 0

has a nontrivial solution, i.e. at values of z for which I − K(z) has nullspace in L2(Rd). This

proves the result for z ∈ D. By connectedness, the result follows for z ∈ Ω: see Exercise 23. �

Exercise 23. Fill in the details of the connectedness argument mentioned in the last sentence

of the proof of Theorem 8. One way to do this is to consider an arbitrary point z1 ∈ Ω, and a

path from z0 to z1, and then define a sequence of finitely many overlapping disks covering the

path, each of which is small enough that ‖K(z)−K(z′)‖ < 1/2 for any z and z′ in the disk. See

Figure 3.

Figure 3. A possible sequence of disks as in the connectedness argument in the

proof of Theorem 8. Adapted from Figure 2.11 of [Fis].

Theorem 7 follows from the following more general result.
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Theorem 9. Let f and g be bounded functions Rd → C which tend to 0 as |x| tends to infinity. Let

f(x) be the operator u(x) 7→ f(x)u(x) and let g(−i∂x) be the operator u 7→ (2π)−d
∫
eixξg(ξ)û(ξ)dξ.

Then the compositions

f(x)g(−i∂x) and g(−i∂x)f(x)

are both compact operators L2(Rd)→ L2(Rd).

Proof. 1. The adjoint of a finite rank operator is finite rank, and so the adjoint of a compact

operator is compact, and hence it is enough to consider f(x)g(−i∂x).

2. We now show that it is enough to consider f and g compactly supported (i.e. identically zero

outside of some ball). To do this let fR(x) = 1[0,R](|x|)f(x) and gR(ξ) = 1[0,R](|ξ|)g(ξ), where

1[0,R] is the function which is 1 on [0, R] and 0 elsewhere. Then we have

‖f(x)g(−i∂x)− fR(x)gR(−i∂x)‖ ≤ ‖f(x)(g(−i∂x)− gR(−i∂x))‖+ ‖(f(x)− fR(x))gR(−i∂x)‖,

where the norms are L2(Rd)→ L2(Rd). Next we have

‖(f(x)− fR(x))gR(−i∂x)‖ ≤ ‖f(x)− fR(x)‖‖gR(−i∂x)‖ ≤ sup |f − fR| sup |gR|,

and sup |f−fR| → 0 and sup |gR| → sup |g| as R→∞. Consequently, assuming we have solved the

problem for f and g compactly supported, given ε > 0 take R large enough that ‖f(x)g(−i∂x)−
fR(x)gR(−i∂x)‖ < ε/2, and then take a finite rank F such that ‖fR(x)gR(−i∂x)−F‖ < ε/2, and

it follows that ‖f(x)g(−i∂x)− F‖ < ε.

3. Now suppose f and g are compactly supported and write

f(x)g(−i∂x)u(x) =
1

(2π)d

∫ ∫
f(x)ei(x−y)ξg(ξ)u(y) dy dξ =

∫
K(x, y)u(y) dy,

where

K(x, y) =
1

(2π)d
f(x)ĝ(y − x).

The function K is called the integral kernel of the operator f(x)g(−i∂x). Observe that K ∈
L2(R2d) because

‖K‖2L2(R2d) =
1

(2π)2d

∫ ∫
|f(x)|2|ĝ(y − x)|2dy dx =

1

(2π)2d

∫
|f(x)|2dx

∫
|ĝ(ỹ)|2dỹ < +∞.

Next write K(x, y) as a linear combination of the harmonic oscillator eigenfunctions ϕα(x)ϕβ(y)

by applying Theorem 1, but with L2(R) replaced by L2(R2d), with f(x) replaced by K(x, y), and

with the ϕn(x) replaced by ϕα(x)ϕβ(y), where

ϕα(x) =
uα(x)

‖uα‖L2(Rd)

, uα(x) = Hα1(x1) · · ·Hαd
(xd)e

−|x|2/2,

and the Hn are the Hermite polynomials as in (11) and (22). Thus

K(x, y) =
∑

α,β∈Nd
0

cαβ ϕα(x)ϕβ(y).

Define the finite rank approximations

FNu(x) =

∫
KN (x, y)u(y)dy, KN (x, y) =

∑
|α|+|β|≤N

cαβ ϕα(x)ϕβ(y).
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Note that each FN has finite rank because its rank is contained in the span of the ϕα with |α| ≤ N ,

so it is enough to show that

‖u‖−1
L2(Rd)

∥∥∥∫ K(x, y)u(y)dy −
∫
KN (x, y)u(y)dy

∥∥∥
L2(Rd)

→ 0, as N →∞.

For that we put K̃ = K −KN and write, using the Cauchy–Schwarz inequality,∥∥∥∫ K̃(x, y)u(y)dy
∥∥∥2
L2(Rd)

=

∫ ∣∣∣ ∫ K̃(x, y)u(y)dy
∣∣∣2dx ≤ ‖K̃‖L2(R2d)‖u‖2L2(Rd).

But, by the Pythagoren theorem (13), we have

‖K̃‖L2(R2d) =
∑

|α|+|β|>N

|cαβ|2,

which tends to 0 as N →∞, as desired. �

That concludes the proof that the spectrum of −∆ + V is discrete in C \ [0,∞) when V is

bounded and V (x) → 0 as |x| → ∞. It is not necessary to assume that V is bounded. We will

prove that if d ≤ 3, then the same conclusion holds under the assumption that V (x) → 0 as

|x| → ∞ and that there is R > 0 such that V 1|x|≤R ∈ L2(Rd), where 1|x|≤R is the function which

is 1 when |x| ≤ R and 0 otherwise. This includes the case of the Coulomb potential V (x) = −Z/|x|
in R3.

By the above reasoning, it is enough to show that V 1|x|≤R(−∆ − z)−1 is a compact operator

L2(Rd) → L2(Rd), and that ‖V 1|x|≤R(−∆ − z)−1‖L2(Rd)→L2(Rd) → 0 as z → −∞. For the latter

we write

‖V 1|x|≤R(−∆− z)−1u‖L2(Rd) ≤ ‖V 1|x|≤R‖L2(Rd) sup |(−∆− z)−1u|,

and

sup |(−∆− z)−1u| ≤ 1

(2π)d

∫
|û(ξ)|
||ξ|2 − z|

dξ ≤ 1

(2π)d/2
‖u‖L2

(∫
||ξ|2 − z|−2dξ

)1/2
,

and observe that d ≤ 3 implies that
∫
||ξ|2 − z|−2dξ → 0 as z → −∞ (substitute η = ξ/

√
−z).

To prove that V 1|x|≤R(−∆ − z)−1 is compact, by Theorem 9 it is enough to show that

‖V 1|x|≤R(−∆ − z)−1 − ṼM (−∆ − z)−1‖L2→L2 → 0 as M → ∞, where ṼM is that function

which equals V when |x| ≤ R and |V (x)| ≤M and which equals 0 otherwise. For that we write

‖V 1|x|≤R(−∆− z)−1u− ṼM (−∆− z)−1u‖L2(Rd) ≤ ‖V 1|x|≤R − ṼM‖L2(Rd) sup |(−∆− z)−1u|,

and observe that

‖V 1|x|≤R − ṼM‖L2(Rd) → 0,

as M →∞, by the dominated convergence theorem.
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4. Propagation of singularities and propagation of regularity. Let c be a positive constant

and let I be an interval. A distributional solution to the one-dimensional free wave equation

(∂2x0 − c
2∂2x1)w(x0, x1) = 0 is w(x0, x1) = 1I(x1 − cx0) + δ(x1 + cx0). This distribution is not

smooth, but its singularities have a special structure. The first term is smooth in the direction

(1, c) and the second term is smooth in the direction (1,−c). This structure can be generalized

to wave equations of arbitrary dimension and with variable coefficients. To do this introduce

definitions which allow us to describe singularities of distributions more generally and precisely.

We begin with the following example.

Example 2. Define u ∈ S ′(R2) by u(x0, x1) = ϕ(x1)δ(x0), where ϕ ∈ S(R). Then û(ξ0, ξ1) =

ϕ̂(ξ1). To find the values of s for which u ∈ Hs(R2) we write∫
R2

(1 + |ξ|2)s|ϕ̂(ξ1)|2dξ =

∫
R

∫
R

(1 + ξ20 + ξ21)sdξ0|ϕ̂(ξ1)|2dξ1.

The inner integral converges if and only if s < −1/2 and we can simplify it by putting ξ0 =

(1 + ξ21)1/2η, dξ0 = (1 + ξ21)1/2dη. That gives∫
R

∫
R

(1 + ξ20 + ξ21)sdξ0|ϕ̂(ξ1)|2dξ1 =

∫
(1 + η2)sdη

∫
(1 + ξ21)s+1/2|ϕ̂(ξ1)|2dξ1.

The ξ1 integral converges because ϕ ∈ S, and hence we see that u ∈ Hs(R2) if and only if

s < −1/2.

Observe that we only used the decay given by the condition s < −1/2 in the ξ0 direction, as

in the ξ1 direction we had ample decay coming from the fact that ϕ ∈ S. This is a reflection of

the fact that u0 is regular in the ξ1 direction and singular in the ξ0 direction. Moreover, u(x) = 0

when x0 6= 0 and is thus completely regular there. To capture this information we will introduce

the notion of being in Hs in a particular direction ξ/|ξ| at a particular point x, or more shortly

being in Hs at (x, ξ/|ξ|). The notion requires a few preliminary definitions, and before stating

it we mention that in this example we will get that u ∈ Hs at (x, ξ/|ξ|) for all s if x0 6= 0 or if

ξ0 = 0, and u ∈ Hs at (x, ξ/|ξ|) for s < −1/2 if x0 = 0 and ξ1 = 0.

Exercise 24. Determine for which values of s is u ∈ Hs(R2) for one or more of the following

functions: a) u(x) = δ(x0)ϕ(x1), where ϕ ∈ Hr(R) for some given real r, b) u(x) = δ(x0)1I(x1),

where I is a bounded interval, c) u(x) = 1I(x0)1J(x1), where I and J are bounded intervals, d)

u(x) = ϕ0(x0)ϕ1(x1), where each ϕj ∈ Hrj (R) for some given real rj .

A function a ∈ C∞(Rd × Rd) is called a symbol of order m if its partial derivatives obey the

bounds

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β|ξ|m−|β|,

for ξ large. To each such symbol we associate a pseudodifferential operator A, called the right

quantization of a, given by

Au(x) =
1

(2π)d

∫ ∫
ei(x−y)·ξa(y, ξ)u(y) dy dξ.

An important example is the classical Hamiltonian a(x, ξ) = |ξ|2 + V (x), whose quantization is

the Schrödinger operator −∆ + V (x). More generally, if a ∈ Sm is a polynomial of degree m in

the ξ variable, then its quantization is a differential operator of order m.
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Exercise 25. Find a symbol a such that A =
∑3

j=0 ∂
j
xj . For which m is a ∈ Sm?

Exercise 26. Find a symbol a such that A = ∂3x0∂
4
x1 + e−x

1
0−x21∂x0∂x1 . For which m is a ∈ Sm?

The major mapping property of these pseudodifferential operators is the following:

Theorem 10. If a ∈ Sm, then A is a bounded operator from Hk to Hk−m for every k.

We will discuss the proof Theorem 10 later, but for now note the following simpler cases:

(1) If a(x, ξ) = a(ξ) is independent of x then A is called a Fourier multiplier. This is bounded

Hk → Hk−m because |a(ξ)| ≤ C(1 + |ξ|2)m/2 and hence

‖Au‖2Hk−m =

∫
|(1 + |ξ|2)(k−m)/2a(ξ)û(ξ)|2dξ ≤ C

∫
|(1 + |ξ|2)k/2û(ξ)|2dξ = C‖u‖2Hk .

(2) If a(x, ξ) = a(x) is independent of ξ then A is the multiplier u(x) 7→ a(x)u(x). This

is bounded L2 → L2 because
∫
|au|2 ≤ sup |a|2

∫
|u|2. If k is an integer, we can prove

boundedness Hk → Hk by arguing as follows: it is enough to show that if all partial

derivatives of u up to order k are in L2 then all partial derivatives of au up to order k are

in L2. This in turn follows from writing out using the product rule that∫
|∂α(au)|2 =

∑
γ≤α

∫
|cα,γ∂α−γa∂γu|2 ≤

∑
γ≤α
|cα,γ |2 sup |∂α−γa|2

∫
|∂γu|2.

In light of Theorem 10 we can say that u ∈ Hk if and only if Au ∈ L2 for all9 a ∈ Sk. This

motivates the following definitions:

Given x′ ∈ Rd, we say that u ∈ Hk at x′ if there is a neighborhood U ⊂ Rd of x′ such that

Au ∈ L2 for all10 a ∈ Sk such that a(x, ξ) = 0 whenever x 6∈ U .

Example 3. Let u be as in Example 2. We can show that u ∈ Hk for all k at all x′ such that x′0 6= 0

as follows. Let U ⊂ Rd be a neighborhood of x′ such that x0 6= 0 for all x in U . Take a ∈ Sk such

that a(x, ξ) = 0 whenever x 6∈ U . Then Au = 0 just because a(y, ξ)δ(y0) = a(0, y2, ξ)δ(y0) = 0.

Given x′ ∈ Rd and ξ′ ∈ Rd \ {0}, we say that u ∈ Hk at (x′, ξ′/|ξ′|) if there is a neighborhood

U ⊂ Rd × Sd−1 of (x′, ξ′/|ξ′|) such that Au ∈ L2 for all11 a ∈ Sk such that a(x, ξ) = 0 whenever

(x, ξ/|ξ|) 6∈ U .

Example 4. Let u be as in Example 2. We can show that u ∈ Hk for all k at all (x′, ξ′/|ξ′|)
such that either x′0 6= 0 or such that ξ′1 6= 0 as follows. If x′0 6= 0, then let U ⊂ Rd × Sd−1 be a

neighborhood of (x′, ξ′/|ξ′|) such that x0 6= 0 for all (x, ξ/|ξ|) in U . Then proceed as in Example

3. If ξ′1 6= 0, then let U ⊂ Rd × Sd−1 be a neighborhood of (x′, ξ′/|ξ′|) such that

there is some constant C such that |ξ| ≤ C|ξ1| whenever (x, ξ/|ξ|) is in U ; (25)

9Of course in practice, if we want to know whether u ∈ Hk, checking Au ∈ L2 for every last a ∈ Sk is overkill

because by definition it is enough to check it for a(x, ξ) = (1 + |ξ|2)k/2.
10As in the previous footnote, we will see later that it is enough to check Au ∈ L2 for a single well-chosen a.
11Again, as in the previous two footnotes, we will see later that it is enough to check Au ∈ L2 for a single

well-chosen a.
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to arrange this it is enough to ensure that U does not intersect the set where ξ1 = 0. Take a ∈ Sk
such that a(x, ξ) = 0 whenever (x, ξ/|ξ|) 6∈ U . Then

‖Au‖2L2 =
1

(2π)d
‖Âu‖2L2 =

1

(2π)d

∫ ∣∣∣ ∫ e−iyξa(y, ξ)u(y) dy
∣∣∣2dξ

=
1

(2π)d

∫ ∣∣∣ ∫ e−iy1ξ1a(0, y1, ξ)ϕ(y1) dy1

∣∣∣2dξ def
=

∫
F (ξ) dξ,

where F (ξ) is defined by the equation. F is well-defined (i.e. the integral defining it converges) and

F is continuous because ϕ ∈ S. To see that
∫
F converges we write

∫
F (ξ)dξ =

∫
|ξ1|≤1 F (ξ)dξ +∫

|ξ1|≥1 F (ξ)dξ, and observe that
∫
|ξ1|≤1 F (ξ)dξ converges because the region of integration and

integrand are both bounded.

Thus it is enough to check that
∫
|ξ1|≥1 F (ξ)dξ converges. We will prove this by proving that

|F (ξ)| ≤ C1|ξ|−4. For that we integrate by parts repeatedly, writing∫
e−iy1ξ1a(0, y1, ξ)ϕ(y1) dy1 =

( i
ξ1

)k+2
∫

(∂k+2
y1 e−iy1ξ1)a(0, y1, ξ)ϕ(y1) dy1

=
(−i
ξ1

)k+2
∫
e−iy1ξ1∂k+2

y1 (a(0, y1, ξ)ϕ(y1)) dy1,

which shows that |
∫
e−iy1ξ1a(0, y1, ξ)ϕ(y1) dy1| ≤ C2|ξ|k|ξ1|−k−2 ≤ C3|ξ|−2, where for the last

inequality we used (25). This concludes the proof that, in this example, if ξ′1 6= 0, then u ∈ Hk for

all k at (x′, ξ′/|ξ′|). In summary, if u is as in Example 2, then u ∈ Hk for all k at all (x′, ξ′/|ξ′|)
provided only that (x′, ξ′/|ξ′|) is not of the form (0, x′1,±1, 0).

Exercise 27. Let u(x0, x1) = δ(x0)1I(x1), where I is a bounded interval. For which (x′, ξ′/|ξ′|)
can you show that u ∈ Hk for all k at (x′, ξ′/|ξ′|)?

Our definition of what it means for u to be in Hk(Rd) at a point x ∈ Rd is called a local

regularity condition. Our definition of what it means for u to be in Hk(Rd) in a certain direction

ξ/|ξ| at a point x ∈ Rd is called a microlocal regularity condition. The term microlocal analysis

refers to analysis in phase space, i.e. the space of Rd × Rd of positions x ∈ Rd and momenta

ξ ∈ Rd taken together.

Our next result is a microlocal elliptic regularity result. We will define what it means for a

symbol a to be elliptic at (x, ξ/|ξ|), and show that if Au = 0 then u ∈ Hk for all k at all (x, ξ/|ξ|)
at which a is elliptic.

This is a microlocal generalization of the classical result that if ∆u = 0 then u ∈ C∞. One says

that the Laplacian ∂2x0 + ∂2x1 is an elliptic differential operator and the D’Alembertian (i.e. the

wave operator) ∂2x0−∂
2
x1 is a hyperbolic; this terminology predates symbols and pseudodifferential

operators but in our language we can say this is because the level sets of the symbol of the

Laplacian are ellipses and the level sets of the symbol of the D’Alembertian are hyperbolas. We

will see however that the D’Alembertian is microlocally elliptic for almost every (x, ξ/|ξ|), even

though there is no sense in which it is locally elliptic for any x at all.
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We say a ∈ Sm is elliptic at (x′, ξ′/|ξ′|) if there are positive constants C and ε, and a neigh-

borhood U ⊂ Rd × Sd−1 of (x′, ξ′/|ξ′|), such that

|a(x, ξ)| ≥ ε|ξ|m,

when (x, ξ/|ξ|) ∈ U and |ξ| ≥ C. The set of points in Rd × Sd−1 at which a is elliptic is denoted

ell(a).

Example 5. The symbol −|ξ|2 of the Laplacian ∂2x0 + ∂2x1 + · · ·+ ∂2xd is elliptic at all (x′, ξ′/|ξ′|),
and the symbol −ξ20 + ξ21 + · · · + ξ2d of the D’Alembertian ∂2x0 − ∂

2
x1 − · · · − ∂

2
xd

is elliptic at all

(x′, ξ′/|ξ′|) such that ξ20 6= ξ21 + · · ·+ ξ2d.

Exercise 28. Let c > 0 be given. For which values of a is u(x0, x1) = δ(x1 + ax0) a solution

to (∂2x0 − c2∂2x1)u(x0, x1) = 0? Prove that, for every (x′, ξ′/|ξ′|), if (∂2x0 − c2∂2x1) is elliptic at

(x′, ξ′/|ξ′|), then u ∈ Hk for all k at (x′, ξ′/|ξ′|).

To each a ∈ Sm which is compactly supported in x, we associate an essential support in terms

of (x′, ξ′/|ξ′|), denoted by ess supp(a), and defined as follows: (x′, ξ′/|ξ′|) is not in the essential

support if and only if there is a neighborhood U ⊂ Rd × Sd−1 of (x′, ξ′/|ξ′|), such that the partial

derivatives of a obey the bounds

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β,N |ξ|−N ,

for |ξ| large enough, when (x, ξ/|ξ|) ∈ U .

Theorem 11. Let a ∈ Sm and a′ ∈ Sm
′

be such that a is compactly supported in x and

ess supp a ⊂ ell(a′). Then for any k and N there is C such that

‖Au‖Hk ≤ C(‖A′u‖Hk+m−m′ + ‖u‖H−N ). (26)

Further discussion and references. A broader presentation of spectral theory with applica-

tions to differential equations can be found in [Bor]. The introduction of that book describes the

development of spectral theory, including the various mathematical and physical concepts that

have gone into it (and come out of it). The proof of Theorem 8 is from Theorem VI.14 of [RS]

and the proof of Theorem 9 is from Lemma 7.21 of [Tes].

The discussion of propagation of singularities and propagation of regularity is a minimalist

version of Hörmander’s propagation of singularities theorem for the wave equation. For a more

complete presentation, see Section 8 of [Hin], and for still more see Section E.4 of [DZ] or Section

3.5 of the original paper of Hörmander [Hör].
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List of notation.

• f̂(ξ) =
∫
e−ixξf(x)dx is the Fourier transform of f . See Section 3 of [FW].

• 〈f, g〉 =
∫
fḡ, and f ⊗ g is the operator mapping u to f〈u, g〉.

• B(a,R) = {x ∈ Rd : |x− a| < R} is the open ball with center a and radius R.

• Ck(Rd) is the space of k-times continuously differentiable functions. This is sometimes

abbreviated as Ck, and similar abbreviations are used for the spaces below.

• Hs(Rd) is the space of Sobolev functions. See Section 6 of [FW].

• Lp(Rd) is the Lebesgue space of measurable functions such that
∫
|f |p converges.

• S(Rd) is the space of Schwartz functions. See Section 2 of [FW].

• S ′(Rd) is the space of tempered distributions. See Section 2 of [FW].
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