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Introduction

In this course we will be studying the behavior of waves as they scatter off of a disturbance, and we
will introduce resonances as a central tool for this purpose. Resonances gives rates of oscillation and

decay of waves.

These slides will be posted at https://www.math.purdue.edu/~kdatchev/SMS

Some additional recommended references, in ascending order of length and complexity, are
» Hintz's five-lecture course http://math.mit.edu/~phintz/snap19/index.html has some
cool videos as well as lecture notes and exercises.
» Dyatlov's semester course https://math.mit.edu/~dyatlov/18.156/ has more
comprehensive lecture notes and more exercises.
» Dyatlov and Zworski's book Mathematical Theory of Scattering Resonances is a much broader
and deeper introduction to the subject.

As we go, | welcome questions and comments in the form of interruptions/chat messages/emails/etc.
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The free wave equation
Let f € C°(R x R"), and let w be the forward solution to the free wave equation
(02 — A)w(t,x) = f(t,x), teR, xeR", (%)
where A = ZJ 1 X . The forward solution is the solution satisfying w(t,x) =0 when t < 0.

Thus w gives the waves resulting from the forcing term f. Physical examples include vibrations of a
membrane resulting from an external force, and components of electromagnetic waves resulting from
charges and currents.

We call () the free wave equation to distinguish it from the perturbed wave equation that we will
consider later. The latter is given by

(97 + H)w(t,x) = f(t,x), ()
where H is an operator which equals (or approximately equals) —A outside of a compact subset of R".

Question. What is the relationship between the solutions to () and (xx)?
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Solving the free wave equation |
To get a formula for the forward solution to
(02 — A)w(t,x) = f(t,x), tcR, xcR", fe C(R xR,
we first take the Fourier transform with respect to x:
07w (t,€) + |2 w(t, &) = F(t.€),

and then solve the resulting ODE! to get

we= [ M e gas o e = [ U sx- G dsdy

where

1 r.e SIn E|E]
ix-& f >
U(t,x) = (2 )n /ne |£| d¢, for t>0,

and U(t,x) =0 for t < 0 (in the sense of distributions).
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Solving the free wave equation |l
To compute

1 we.c SN t|¢]
U(t,x) = / ex¢ de¢, for t>0,
)= Gmy J 18
at least up to a constant factor, we use the more basic (but tricky2) Fourier transform identity
: C
/ exteVlge= Y for y>o.
m (2 +[x[*)=

(Here and below, C is a real constant which changes from line to line). Integrating both sides with
respect to y gives, when n > 23

eyl c gitlel c
/e’xfe dé = — for y > 0, and so /e'x'ge dé = — for Imt > 0.

€] (y2 + |x[2) "= €] (|x]2 = t2)"2

Taking the limit as t approaches the real axis gives the following distributional boundary values:

., eltlél C C
/ KEZ_de = lim — U(t,x) =Im lim ., for t>0.
€] =0 (X2 = (t+ie)?) = e=0" ([x]2 = (t +ie)?) =
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Distributional boundary values

The distributional boundary value

it|€|
/'Xfe de = | < - C . ot t>0,
GO o E (=)

is almost everywhere smooth. More precisely, if |x| > t, then

1 _ 1 (*)
(X2 = (t+i02) 7 (Ix]2—¢2)

and if t > |x|, then
! B ) (%)
(X2 = (t+i02)= (2 - |x2)=

Notice that (%) is real for all n, and (xx) is real for odd n. Recall that U(t,x) =Im ——¢ .
(Ix[2=(t+i0)2) 2"
This difference between n odd and n even will recur and be important.
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The forward fundamental solution of the free wave equation

Thus the forward solution to (87 — A)w = f is w(t,x) = [, g U(t — 5,x — y)f(s,y) ds dy, where*

U(t,x) = Im ¢ . t>0.
(IxI? = (¢ +i0)?) =

When n = 2 this is

1
—_— x| <'t,
U(t,x) =} 2m/t? — |x|? g
0, otherwise,

and when n = 3 this is

Ut x) = 50(1x] — 1)
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Huygens' principle for the free wave equation
Thus the forward solution to (87 — A)w = f is w(t,x) = [ g U(t — s,x — y)f(s,y) ds dy, where®

C
. t>0.

(Ix[> = (t +10)2) =2

We can now allow f to be a compactly supported distribution.

U(t,x) =Im

If n > 3 is odd, then U vanishes away from |x| = t. Hence
supp w C {(t,x) such that |x — y| =t — s for some (s,y) € suppf}.
This is the strong Huygens principle.

If n > 2 is even, then U vanishes away from |x| < t and
is smooth away from |x| = t. Hence

suppw C {(t, x) such that |x — y| <t — s for some (s,y) € supp f},
singsuppw C {(t, x) such that |x — y| = t — s for some (s,y) € suppf}.

This is the weak Huygens principle.®
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Decay of free waves
The forward solution to (87 — A)w = f is w(t,x) = [, g U(t — 5,x — y)f(s,y) ds dy, where
C

U(t,x) =Im —, t>0.
(Ix[* = (£ +1i0)%) =

Let f be a compactly supported distribution and B C R” be a ball.
Then, if T is large enough depending on B and the support of f:

> If n>3is odd,’ then, by the strong Huygens principle,
w(t,x) =0, forallxe B, t > T.

Thus all waves die away completely in any compact set.

» If n > 2 is even, then, by the weak Huygens principle, w is C>* forall x € B, t > T. Moreover,8

lw(t,x)| < Gt ", forallxe B, t>T.

Thus all waves decay polynomially in any compact set.

Question. What are the correct generalizations of these results for perturbed waves? How do the

decay rates depend on the perturbation?
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References

The presentation above follows Chapter 3, Section 5, of Taylor's Partial Differential Equations, except
for Exercise 2 which follows Theorem 1.14 of Chapter 1 of Stein and Weiss's Introduction to Fourier
Analysis on Euclidean Spaces.

10/10



Exercises.

The exercises marked with a * are more central to the course. (They are not the more difficult ones.)

1. Show that if f € C°(R x R"), then the solution to

W (t,€) + €2 (t, €) = 1(1,€),
which obeys w(t,£) = 0 when t < 0, is given by

w(t, ) :[ Sir](t|g|s)|£f(s,§)ds.

Hint: Use the method of variation of parameters, or the Laplace transform or Fourier transform.
If you're not used to using variation of parameters, this is a good occasion to practice it; it is generally
useful in one dimensional scattering.

2. Prove that

. C
/ e teVIElge = 7)/"“, for y >0,
- 2+ IxP) =
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Hint: Use a change of variables to reduce to the case y = 1, and then plug in the following:

oo iléls 1 o0
e ¢l = C/ eids, and —— :/ e_”e_”52du,
s 1 —+ 52 1 + 52 0

(to check the first use contour deformation), and then switch the order of integration, so that you get
a Gaussian Fourier transform and then another Gaussian Fourier transform. If you're curious, you can
write the constant in terms of the Gamma function, but we won't need this.

3.* Compute

U(t,x) = / gl tl¢] d§, for t >0,

(2m)" €l

when n = 1.

Hint: Use the Fourier transform of the characteristic function of an interval and the Fourier
inversion formula.

4.
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1. Given ¢ and ¢ € C°(R"), find a distribution f on R x R" such that the forward solution w to
(02 — A )w(t, x) = f(t,x),
equals the solution to the Cauchy problem

(02 — A )wi(t,x) =0,  wi(0,x) = p(x),  dewr(0,x) = h(x),
when t > 0.

Hint: Use §(t) and &’(t). You can solve the Cauchy problem by taking Fourier transform with
respect to x as in Exercise 1. Check uniqueness using the fact that the energy
Jgn(Oew1)? + |V w1 [>dx is conserved.

2. When n = 2, show by direct calculation that

C C

(%2 = (t+i0)2) 7 /E—xP

and U(t, x) = 0 otherwise. In particular, combining with the result of Exercise 3, U is a locally
integrable function when n < 1.

U(t,x) =Im for t>|x|.

3. Prove by direct calculation the Plemelj jump formula

(x —i0)™t — (x +i0) "' = Cis(x),

10/10



and use it to show that
C C
U(taX) =Im 1 76(|X‘ - t)7
(Ix[* = (t +10)?) t

when n = 3.

5. Given ¢ and ¢ € C2°(R"), find a distribution f on R x R” such that the forward solution w to
(07 = Aw(t, x) = £(t, x),
equals the solution to the Cauchy problem
(02 — A )wy(t,x) =0, wy (0, x) = ¢(x), 9w (0, x) = P(x),

when t > 0.

Hint: Use §(t) and 0’(t). You can solve the Cauchy problem by taking Fourier transform with
respect to x as in Exercise 1. Check uniqueness using the fact that the energy fRn(ﬁtW1)2 +|Vews|?dx
is conserved.

6.* Show that the weak Huygens principle holds when n = 1 using the calculation of U(t,x) from

Exercise 3.
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7.* Let f be a compactly supported distribution in R x R, let w be the forward solution to 9?w —
02w = f, and let | C R be a bounded interval. Use the calculation of U(t, x) from Exercise 3 to show
that if T is large enough depending on /| and the support of f, then

W(t,x)—C/ f=0, forallxel, t>T.
RxR

Thus Cf]Rx]R f is the steady state solution. Later we will interpret this term as a projection onto a
resonance at 0.

8. Let
w(ex)= [ U= sx-y)f(s.y)dsob.
RxR"
where f € C°(R x R") and n > 2 is even. Use the fact that
C
U(t,x) = ———, when t> x|,
(2= Ix]?)=
to show that for any ball B C R” there is a T such that
\w(t,x)| < Gt~ forallxe B, t>T.

Find an example showing that the power t~"*1 is optimal.
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