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Introduction

In this course we will be studying the behavior of waves as they scatter off of a disturbance, and we
will introduce resonances as a central tool for this purpose. Resonances gives rates of oscillation and
decay of waves.

These slides will be posted at https://www.math.purdue.edu/~kdatchev/SMS

Some additional recommended references, in ascending order of length and complexity, are

I Hintz’s five-lecture course http://math.mit.edu/~phintz/snap19/index.html has some
cool videos as well as lecture notes and exercises.

I Dyatlov’s semester course https://math.mit.edu/~dyatlov/18.156/ has more
comprehensive lecture notes and more exercises.

I Dyatlov and Zworski’s book Mathematical Theory of Scattering Resonances is a much broader
and deeper introduction to the subject.

As we go, I welcome questions and comments in the form of interruptions/chat messages/emails/etc.
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The free wave equation

Let f ∈ C∞c (R× Rn), and let w be the forward solution to the free wave equation

(∂2t −∆)w(t, x) = f (t, x), t ∈ R, x ∈ Rn, (∗)

where ∆ =
∑n

j=1 ∂
2
xj . The forward solution is the solution satisfying w(t, x) = 0 when t � 0.

Thus w gives the waves resulting from the forcing term f . Physical examples include vibrations of a
membrane resulting from an external force, and components of electromagnetic waves resulting from
charges and currents.

We call (∗) the free wave equation to distinguish it from the perturbed wave equation that we will
consider later. The latter is given by

(∂2t + H)w(t, x) = f (t, x), (∗∗)

where H is an operator which equals (or approximately equals) −∆ outside of a compact subset of Rn.

Question. What is the relationship between the solutions to (∗) and (∗∗)?
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Solving the free wave equation I

To get a formula for the forward solution to

(∂2t −∆)w(t, x) = f (t, x), t ∈ R, x ∈ Rn, f ∈ C∞c (R× Rn),

we first take the Fourier transform with respect to x :

∂2t ŵ(t, ξ) + |ξ|2ŵ(t, ξ) = f̂ (t, ξ),

and then solve the resulting ODE1 to get

ŵ(t, ξ) =

∫ t

−∞

sin(t − s)|ξ|
|ξ|

f̂ (s, ξ) ds, or w(t, x) =

∫
R×Rn

U(t − s, x − y)f (s, y) ds dy ,

where

U(t, x) =
1

(2π)n

∫
Rn

e ix·ξ
sin t|ξ|
|ξ|

dξ, for t ≥ 0,

and U(t, x) = 0 for t < 0 (in the sense of distributions).
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Solving the free wave equation II
To compute

U(t, x) =
1

(2π)n

∫
Rn

e ix·ξ
sin t|ξ|
|ξ|

dξ, for t ≥ 0,

at least up to a constant factor, we use the more basic (but tricky2) Fourier transform identity∫
Rn

e ix·ξe−y |ξ|dξ =
Cy

(y2 + |x |2)
n+1
2

, for y > 0.

(Here and below, C is a real constant which changes from line to line). Integrating both sides with
respect to y gives, when n ≥ 2,3∫

e ix·ξ
e−y |ξ|

|ξ|
dξ =

C

(y2 + |x |2)
n−1
2

for y > 0, and so

∫
e ix·ξ

e it|ξ|

|ξ|
dξ =

C

(|x |2 − t2)
n−1
2

for Im t > 0.

Taking the limit as t approaches the real axis gives the following distributional boundary values:∫
e ix·ξ

e it|ξ|

|ξ|
dξ = lim

ε→0+

C

(|x |2 − (t + iε)2)
n−1
2

, U(t, x) = Im lim
ε→0+

C

(|x |2 − (t + iε)2)
n−1
2

, for t ≥ 0.
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Distributional boundary values

The distributional boundary value∫
e ix·ξ

e it|ξ|

|ξ|
dξ = lim

ε→0+

C

(|x |2 − (t + iε)2)
n−1
2

=
C

(|x |2 − (t + i0)2)
n−1
2

, for t ≥ 0,

is almost everywhere smooth. More precisely, if |x | > t, then

1

(|x |2 − (t + i0)2)
n−1
2

=
1

(|x |2 − t2)
n−1
2

, (∗)

and if t > |x |, then
1

(|x |2 − (t + i0)2)
n−1
2

=
(−i)n−1

(t2 − |x |2)
n−1
2

. (∗∗)

Notice that (∗) is real for all n, and (∗∗) is real for odd n. Recall that U(t, x) = Im C

(|x|2−(t+i0)2)
n−1
2

.

This difference between n odd and n even will recur and be important.
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The forward fundamental solution of the free wave equation

Thus the forward solution to (∂2t −∆)w = f is w(t, x) =
∫
R×Rn U(t − s, x − y)f (s, y) ds dy , where4

U(t, x) = Im
C

(|x |2 − (t + i0)2)
n−1
2

, t ≥ 0.

When n = 2 this is

U(t, x) =


1

2π
√
t2 − |x |2

, |x | < t,

0, otherwise,

and when n = 3 this is

U(t, x) =
1

4πt
δ(|x | − t).
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Huygens’ principle for the free wave equation
Thus the forward solution to (∂2t −∆)w = f is w(t, x) =

∫
R×Rn U(t − s, x − y)f (s, y) ds dy , where5

U(t, x) = Im
C

(|x |2 − (t + i0)2)
n−1
2

, t ≥ 0.

We can now allow f to be a compactly supported distribution.

If n ≥ 3 is odd, then U vanishes away from |x | = t. Hence

suppw ⊂ {(t, x) such that |x − y | = t − s for some (s, y) ∈ supp f }.

This is the strong Huygens principle.

If n ≥ 2 is even, then U vanishes away from |x | ≤ t and
is smooth away from |x | = t. Hence

suppw ⊂ {(t, x) such that |x − y | ≤ t − s for some (s, y) ∈ supp f },
sing suppw ⊂ {(t, x) such that |x − y | = t − s for some (s, y) ∈ supp f }.

This is the weak Huygens principle.6
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Decay of free waves
The forward solution to (∂2t −∆)w = f is w(t, x) =

∫
R×Rn U(t − s, x − y)f (s, y) ds dy , where

U(t, x) = Im
C

(|x |2 − (t + i0)2)
n−1
2

, t ≥ 0.

Let f be a compactly supported distribution and B ⊂ Rn be a ball.
Then, if T is large enough depending on B and the support of f :

I If n ≥ 3 is odd,7 then, by the strong Huygens principle,

w(t, x) = 0, for all x ∈ B, t ≥ T .

Thus all waves die away completely in any compact set.

I If n ≥ 2 is even, then, by the weak Huygens principle, w is C∞ for all x ∈ B, t ≥ T . Moreover,8

|w(t, x)| ≤ Cf t
−n+1, for all x ∈ B, t ≥ T .

Thus all waves decay polynomially in any compact set.

Question. What are the correct generalizations of these results for perturbed waves? How do the
decay rates depend on the perturbation?
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References

The presentation above follows Chapter 3, Section 5, of Taylor’s Partial Differential Equations, except
for Exercise 2 which follows Theorem 1.14 of Chapter 1 of Stein and Weiss’s Introduction to Fourier
Analysis on Euclidean Spaces.
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Exercises.

The exercises marked with a * are more central to the course. (They are not the more difficult ones.)

1. Show that if f ∈ C∞c (R× Rn), then the solution to

∂2t ŵ(t, ξ) + |ξ|2ŵ(t, ξ) = f̂ (t, ξ),

which obeys ŵ(t, ξ) = 0 when t � 0, is given by

ŵ(t, ξ) =

∫ t

−∞

sin(t − s)|ξ|
|ξ|

f̂ (s, ξ)ds.

Hint: Use the method of variation of parameters, or the Laplace transform or Fourier transform.
If you’re not used to using variation of parameters, this is a good occasion to practice it; it is generally
useful in one dimensional scattering.

2. Prove that ∫
Rn

e ix·ξe−y |ξ|dξ =
Cy

(y2 + |x |2)
n+1
2

, for y > 0,
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Hint: Use a change of variables to reduce to the case y = 1, and then plug in the following:

e−|ξ| = C

∫ ∞
−∞

e i|ξ|s

1 + s2
ds, and

1

1 + s2
=

∫ ∞
0

e−ue−us
2

du,

(to check the first use contour deformation), and then switch the order of integration, so that you get
a Gaussian Fourier transform and then another Gaussian Fourier transform. If you’re curious, you can
write the constant in terms of the Gamma function, but we won’t need this.

3. * Compute

U(t, x) =
1

(2π)n

∫
Rn

e ix·ξ
sin t|ξ|
|ξ|

dξ, for t ≥ 0,

when n = 1.

Hint: Use the Fourier transform of the characteristic function of an interval and the Fourier
inversion formula.

4.

10 / 10



1. Given ϕ and ψ ∈ C∞c (Rn), find a distribution f on R× Rn such that the forward solution w to

(∂2t −∆x)w(t, x) = f (t, x),

equals the solution to the Cauchy problem

(∂2t −∆x)w1(t, x) = 0, w1(0, x) = ϕ(x), ∂tw1(0, x) = ψ(x),

when t > 0.

Hint: Use δ(t) and δ′(t). You can solve the Cauchy problem by taking Fourier transform with
respect to x as in Exercise 1. Check uniqueness using the fact that the energy∫
Rn(∂tw1)2 + |∇xw1|2dx is conserved.

2. When n = 2, show by direct calculation that

U(t, x) = Im
C

(|x |2 − (t + i0)2)
n−1
2

=
C√

t2 − |x |2
, for t > |x |.

and U(t, x) = 0 otherwise. In particular, combining with the result of Exercise 3, U is a locally
integrable function when n ≤ 1.

3. Prove by direct calculation the Plemelj jump formula

(x − i0)−1 − (x + i0)−1 = Ciδ(x),
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and use it to show that

U(t, x) = Im
C

(|x |2 − (t + i0)2)
n−1
2

=
C

t
δ(|x | − t),

when n = 3.

5. Given ϕ and ψ ∈ C∞c (Rn), find a distribution f on R× Rn such that the forward solution w to

(∂2t −∆x)w(t, x) = f (t, x),

equals the solution to the Cauchy problem

(∂2t −∆x)w1(t, x) = 0, w1(0, x) = ϕ(x), ∂tw1(0, x) = ψ(x),

when t > 0.

Hint: Use δ(t) and δ′(t). You can solve the Cauchy problem by taking Fourier transform with
respect to x as in Exercise 1. Check uniqueness using the fact that the energy

∫
Rn(∂tw1)2 + |∇xw1|2dx

is conserved.

6. * Show that the weak Huygens principle holds when n = 1 using the calculation of U(t, x) from
Exercise 3.

10 / 10



7. * Let f be a compactly supported distribution in R× R, let w be the forward solution to ∂2t w −
∂2xw = f , and let I ⊂ R be a bounded interval. Use the calculation of U(t, x) from Exercise 3 to show
that if T is large enough depending on I and the support of f , then

w(t, x)− C

∫
R×R

f = 0, for all x ∈ I , t ≥ T .

Thus C
∫
R×R f is the steady state solution. Later we will interpret this term as a projection onto a

resonance at 0.

8. Let

w(t, x) =

∫
R×Rn

U(t − s, x − y)f (s, y) ds dy ,

where f ∈ C∞c (R× Rn) and n ≥ 2 is even. Use the fact that

U(t, x) =
C

(t2 − |x |2)
n−1
2

, when t > |x |,

to show that for any ball B ⊂ Rn there is a T such that

|w(t, x)| ≤ Cf t
−n+1, for all x ∈ B, t ≥ T .

Find an example showing that the power t−n+1 is optimal.
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