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Introduction

In this course we will be studying the behavior of waves as they scatter off of a disturbance, and we
will introduce resonances as a central tool for this purpose. Resonances gives rates of oscillation and

decay of waves.

These slides will be posted at https://www.math.purdue.edu/~kdatchev/SMS

Some additional recommended references, in ascending order of length and complexity, are
» Hintz's five-lecture course http://math.mit.edu/~phintz/snap19/index.html has some
cool videos as well as lecture notes and exercises.
» Dyatlov's semester course https://math.mit.edu/~dyatlov/18.156/ has more
comprehensive lecture notes and more exercises.
» Dyatlov and Zworski's book Mathematical Theory of Scattering Resonances is a much broader
and deeper introduction to the subject.

As we go, | welcome questions and comments in the form of interruptions/chat messages/emails/etc.
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The free wave equation
Let f € C°(R x R"), and let w be the forward solution to the free wave equation
(02 — A)w(t,x) = f(t,x), teR, x eR", (%)
where A = ZJ 1 X . The forward solution is the solution satisfying w(t,x) =0 when t < 0.

Thus w gives the waves resulting from the forcing term f. Physical examples include vibrations of a
membrane resulting from an external force, and components of electromagnetic waves resulting from
charges and currents.

We call (%) the free wave equation to distinguish it from the perturbed wave equation that we will
consider later. The latter is given by

(87 + H)w(t,x) = f(t,x), (o)
where H is an operator which equals (or approximately equals) —A outside of a compact subset of R".

Question. What is the relationship between the solutions to () and (xx)?
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Solving the free wave equation |
To get a formula for the forward solution to
(02 — A)w(t,x) = f(t,x), tcR, xcR", fe C(R xR,
we first take the Fourier transform with respect to x:
07w (t,€) + |€2w(t, &) = F(t.€),

and then solve the resulting ODE! to get

wee= [ M agas o e = [ U sx- i) dsdy

where

1 e SIn E|E]
= ’Xf f >
U(t, x) ) /Rn e ] d¢§, for t>0,

and U(t,x) =0 for t < 0 (in the sense of distributions).
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Solving the free wave equation |l
To compute

1 r.e Sin t|¢]
= ’Xé f >
U(t, x) R /Rn e ] d¢, for t>0,

at least up to a constant factor, we use the more basic (but tricky2) Fourier transform identity
: C
/ exteVlge= Y for y>o.
: 2 + k)%

(Here and below, C is a real constant which changes from line to line). Integrating both sides with
respect to y gives, when n > 23

oyl c gitlel c
/e’xfe dé = _fory >0, and so /e'x'ge dé = — for Imt > 0.

€] (02 + IxP) € (xP - )

Taking the limit as t approaches the real axis gives the following distributional boundary values:

., eltlél C C
/e“f—dg: lim — U(t,x) =Im lim ., for t>0.
A TS (X (i) 0 (X2 = (e +i)2) T

can renlace e bv coc 5/10



Distributional boundary values

The distributional boundary value

it|€|
/'Xﬁe de = | < - C . ot t>0,
G o E (=t o)

is almost everywhere smooth. More precisely, if |x| > t, then

1 _ 1 (*)
(X2 = (t+i02) 7 (Ix]2—2)

and if t > |x]|, then
1 i : (%)
(X2 = (t+i02)= (2 - |x2)=

Notice that (%) is real for all n, and (xx) is real for odd n. Recall that U(t,x) =Im ——& .
(Ix[2=(t+i0)2) 2"
This difference between n odd and n even will recur and be important.
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The forward fundamental solution of the free wave equation

Thus the forward solution to (87 — A)w = f is w(t,x) = [, U(t — 5,x — y)f(s,y) ds dy, where*

C

U(t,x) =Im —, t>0.
(Ix[? = (t +1i0)2)=
When n = 2 this is
! x| < t
77 X b
U(t,x) =} 2m/t? — |x|?
0, otherwise,

N

and when n = 3 this is

—_—

Ut x) = 50(1x] — 1) x
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Huygens' principle for the free wave equation
Thus the forward solution to (87 — A)w = f is w(t,x) = [, g U(t — s,x — y)f(s,y) ds dy, where®

C
—, t>0.

(Ix[> = (t +10)2) =2

We can now allow f to be a compactly supported distribution.

U(t,x) =Im

If n > 3 is odd, then U vanishes away from |x| = t. Hence

supp £\
/

suppw C {(t,x) such that |x — y| =t — s for some (s,y) € supp f}.

X
This is the strong Huygens principle.

If n > 2 is even, then U vanishes away from |x| < t and
is smooth away from |x| = t. Hence

suppw C {(t,x) such that |x — y| <t — s for some (s,y) € supp f},
singsuppw C {(t, x) such that |x — y| = t — s for some (s,y) € suppf}.

This is the weak Huygens principle.®
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Decay of free waves
The forward solution to (87 — A)w = f is w(t,x) = [, U(t — 5,x — y)f(s,y) ds dy, where
C

U(t,x) =Im —, t>0.
(Ix[? = (£ +1i0)%) =

Let f be a compactly supported distribution and B C R” be a ball.
Then, if T is large enough depending on B and the support of f: Suppf>

> If n>3is odd,’ then, by the strong Huygens principle,

X

w(t,x) =0, forallxe B, t > T.

Thus all waves die away completely in any compact set.

» If n > 2 is even, then, by the weak Huygens principle, wis C* forall x e B, t > T. Moreover,8

lw(t,x)| < Gt ", forallxe B, t>T.

Thus all waves decay polynomially in any compact set.

Question. What are the correct generalizations of these results for perturbed waves? How do the

decay rates depend on the perturbation?
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References

The presentation above follows Chapter 3, Section 5, of Taylor's Partial Differential Equations, except
for Exercise 2 which follows Theorem 1.14 of Chapter 1 of Stein and Weiss's Introduction to Fourier
Analysis on Euclidean Spaces.
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Exercises.

The exercises marked with a * are more central to the course. (They are not the more difficult ones.)

1. Show that if f € C2°(R x R"), then the solution to

W (t,€) + €7 (t, €) = 1(t,€),
which obeys W(t,£) = 0 when t < 0, is given by

w(t,§) :[ Sir](t|g|s)|£f(s,£)ds.

Hint: Use the method of variation of parameters, or the Laplace transform or Fourier transform.
If you're not used to using variation of parameters, this is a good occasion to practice it; it is generally
useful in one dimensional scattering.

2. Prove that

, C
/ e teVIElge = 7)/"“, for y >0,
" (2 + [x[) =
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Hint: Use a change of variables to reduce to the case y = 1, and then plug in the following:

o iléls 1 o0
e I8l = C/ eids, and —— :/ e e " du,
s 1 + 52 1 + 52 0

(to check the first use contour deformation), and then switch the order of integration, so that you get
a Gaussian Fourier transform and then another Gaussian Fourier transform. If you're curious, you can
write the constant in terms of the Gamma function, but we won’t need this.

3.* Compute

U(t,x) = / gl ti¢] d§, for t >0,

(2m)" €l

when n = 1.

Hint: Use the Fourier transform of the characteristic function of an interval and the Fourier
inversion formula.

4.
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1. Given ¢ and ¢ € C°(R"), find a distribution f on R x R" such that the forward solution w to
(02 — A )w(t,x) = f(t,x),
equals the solution to the Cauchy problem

(02 =D )wi(t,x) =0,  wi(0,x) = p(x),  dewr(0,x) = h(x),
when t > 0.

Hint: Use §(t) and ¢’(t). You can solve the Cauchy problem by taking Fourier transform with
respect to x as in Exercise 1. Check uniqueness using the fact that the energy
Jgn(Oew1)? + |V w1 [dx is conserved.

2. When n = 2, show by direct calculation that

C C

(%2 — (t+i0)2)F /& —xP

and U(t, x) = 0 otherwise. In particular, combining with the result of Exercise 3, U is a locally
integrable function when n < 1.

U(t,x) =Im for t>|x|.

3. Prove by direct calculation the Plemelj jump formula

(x —i0)™! — (x +i0)~* = Cid(x),

10/10



and use it to show that
C C
U(t,X) =Im n—1 76(|X‘ - t)7
(|x[* = (t +10)?) t

when n = 3.

5. Given ¢ and ¢ € C°(R"), find a distribution f on R x R” such that the forward solution w to
(07 = Aw(t, x) = £(t, x),
equals the solution to the Cauchy problem
(02 — A )wy(t,x) =0, wy (0, x) = ¢(x), 9w (0, x) = P(x),

when t > 0.

Hint: Use §(t) and 6’(t). You can solve the Cauchy problem by taking Fourier transform with
respect to x as in Exercise 1. Check uniqueness using the fact that the energy fRn(atw1)2 +|Vewy|?dx
is conserved.

6.* Show that the weak Huygens principle holds when n = 1 using the calculation of U(t,x) from

Exercise 3.
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7.* Let f be a compactly supported distribution in R x R, let w be the forward solution to 9?w —
02w = f, and let | C R be a bounded interval. Use the calculation of U(t, x) from Exercise 3 to show
that if T is large enough depending on [/ and the support of f, then

W(t,x)—C/ f=0, forallxel, t>T.
RxR

Thus Cf]Rx]R f is the steady state solution. Later we will interpret this term as a projection onto a
resonance at 0.

8. Let
w(ex)= [ U= sx-y)f(s.y)dsob.
RxR"
where f € C°(R x R") and n > 2 is even. Use the fact that
C
U(t,x) = ———, when t> x|,
(22— Ix]?)=
to show that for any ball B C R” there is a T such that
\w(t,x)| < Crt™ "t forallxe B, t>T.

Find an example showing that the power t~"*1 is optimal.
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