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Fourier–Laplace transform of the perturbed wave equation
Let H be a differential operator on Rn, a perturbation of −∆, such as −∆+ V with V ∈ C∞

c (Rn),
and let f ∈ C∞

c ([T0,T1]× Rn). We wish to find and study the forward solution to

(∂2
t + H)w(t, x) = f (t, x). (∗)

We will use a Fourier–Laplace transform with respect to t, and, for a suitable A ∈ R, define

w(t, x) =
1

2π

∫ ∞+iA

−∞+iA

e−itλ(H − λ2)−1 f̃ (λ, x)dλ, f̃ (λ, x) =

∫ T1

T0

e isλf (s, x)ds.

Note that λ 7→ f̃ (λ, x) is entire and |∂α f̃ (λ, x)| ≤ Cα,Ne
−T0 Imλ|λ|−N for any α, N, Imλ ≥ 0. Hence,

by differentiating under the integral and using a contour deformation, w solves (∗):

(∂2
t + H)w(t, x) =

1

2π

∫ ∞+iA

−∞+iA

e−itλ f̃ (λ, x)dλ =
1

2π

∫ ∞

−∞
e−itλ f̃ (λ, x)dλ = f (t, x).
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Vector ODE I
We thus see that, if the resolvent (H − λ2)−1 is nice enough that we can differentiate under the
integral, then

w(t, x) =
1

2π

∫ ∞+iA

−∞+iA

e−itλ(H − λ2)−1 f̃ (λ, x)dλ, f̃ (λ, x) =

∫ T1

T0

e isλf (s, x)ds,

solves
(∂2

t + H)w(t, x) = f (t, x).

To analyze the solution further, we do further contour deformations, and use further mapping
properties and estimates of the resolvent.

This is difficult, so as a warm-up, consider the easier vector ODE problem where H is an m ×m
matrix and f ∈ C∞

c ([T0,T1];Cm). We wish to find w ∈ C∞(R;Cm) such that

(∂2
t + H)w(t) = f (t),

and such that w(t) = 0 for t ≤ T0.
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Vector ODE II
Let H be an m ×m matrix and f ∈ C∞

c ([T0,T1];Cm). Then, for A sufficiently large, the vector ODE

(∂2
t + H)w(t) = f (t),

has a unique forward solution1 given by

w(t) =
1

2π

∫ ∞+iA

−∞+iA

e−itλ(H − λ2)−1 f̃ (λ)dλ, f̃ (λ) =

∫ T1

T0

e isλf (s)ds.

We will first check this by differentiating under the integral sign, second show that w(t) = 0 for
t ≤ 0, and third compute asymptotics as t → ∞.

1. To justify differentiating under the integral sign, use the fact that f̃ is entire,

|f̃ (λ)| ≤ Cf e
−T0 Imλ|λ|−2, when Imλ > 0

by integration by parts, and, when |λ| is sufficiently large, we have the estimate

∥(H − λ2)−1∥ ≤ 2|λ|−2,

thanks to the geometric series

(H − λ2)−1 = −λ−2(I − λ−2H)−1 = −λ−2
∞∑
j=0

λ−2jH j .
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Vector ODE III
Let H be an m ×m matrix and f ∈ C∞

c ([T0,T1];Cm). Then, for A sufficiently large

w(t) =
1

2π

∫ ∞+iA

−∞+iA

e−itλ(H−λ2)−1 f̃ (λ)dλ, f̃ (λ) =

∫ T1

T0

e isλf (s)ds solves (∂2
t +H)w(t) = f (t).

2. Next, if B > A, then, using |f̃ (λ)| ≤ Cf e
−T0 Imλ|λ|−2 and ∥(H − λ2)−1∥ ≤ 2|λ|−2,

w(t) =
1

2π

∫ ∞+iB

−∞+iB

e−itλ(H − λ2)−1 f̃ (λ)dλ,

by shifting the contour up. Thus

|w(t)| ≤ etB

2π

∫ ∞

−∞
|(H − (µ+ iB)2)−1 f̃ (µ+ iB)|dµ

≤ Cf e
(t−T0)B ,

which tends to 0 as B → ∞, for all t < T0.

Hence w(t) = 0 for t ≤ T0.
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Vector ODE IV

Let H be an m ×m matrix and f ∈ C∞
c ([T0,T1];Cm). Then, for A sufficiently large

w(t) =
1

2π

∫ ∞+iA

−∞+iA

e−itλ(H−λ2)−1 f̃ (λ)dλ, f̃ (λ) =

∫ T1

T0

e isλf (s)ds solves (∂2
t +H)w(t) = f (t).

3. To study asymptotics as t → ∞, we repeat the same argument, but instead shift the contour
down. We use |f̃ (λ)| ≤ Cf e

−T1 Imλ|λ|−2 when Imλ < 0, take M ≫ 0, and obtain

w(t) = −
∑
λj

iRλj (t) + E (t),

where Rλj (t) is the residue of e−itλ(H − λ2)−1 f̃ (λ) at the pole λj , and

|E (t)| = 1

2π

∣∣∣ ∫ ∞−iM

−∞−iM

e−itλ(H−λ2)−1 f̃ (λ)dλ
∣∣∣ ≤ Cf e

−M(t−T1).

Taking M → ∞ shows that E (t) = 0 when t ≥ T1.
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Vector ODE V
Let H be an m ×m matrix and f ∈ C∞

c ([T0,T1];Cm). Then, for A sufficiently large

w(t) =
1

2π

∫ ∞+iA

−∞+iA

e−itλ(H−λ2)−1 f̃ (λ)dλ, f̃ (λ) =

∫ T1

T0

e isλf (s)ds solves (∂2
t +H)w(t) = f (t).

For t ≥ T1, we have

w(t) = −
∑
λj

iRλj (t),

where Rλj is the residue of e−itλ(H − λ2)−1 f̃ (λ) at the pole λj . If λj is a pole of order K , then

Rλj (t) =
K∑

k=1

tk−1e−itλjwj,k .

Note that poles occur at square roots of eigenvalues of H. One can show2 that the wj,k are
(generalized) eigenvectors of H with eigenvalue λ2

j .

When m = 1, the problem becomes particularly simple, and we have two poles with k = 1, unless
H = 0.3
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Perturbed waves

After this warm-up, we turn to an actual problem in scattering theory. Given V ∈ C∞
c (Rn) and

f ∈ C∞
c (R× Rn), we will solve

(∂2
t −∆+ V )w(t, x) = f (t, x),

by writing, for A sufficiently large,

w(t, x) =
1

2π

∫ ∞+iA

−∞+iA

e−itλ(−∆+ V − λ2)−1 f̃ (λ, x)dλ, f̃ (λ, x) =

∫ T1

T0

e isλf (s, x)ds.

We will construct the perturbed resolvent (−∆+ V − λ2)−1 by using the free resolvent (−∆− λ2)−1

as a parametrix, or approximate solution, writing

(−∆+ V − λ2)(−∆− λ2)−1 = I + V (−∆− λ2)−1.

Then we will solve away the remainder by showing that (−∆− λ2)−1 is small in a suitable sense
when Imλ is large.
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Estimates on the free resolvent.
For any real r , the Sobolev space H r is given by

H r = {f : (−∆+ 1)r/2f ∈ L2}, ∥f ∥H r = ∥(−∆+ 1)r/2f ∥L2 ,

with functions of −∆, including the free resolvent (−∆− λ2)−1, defined as Fourier multipliers:

φ(−∆)f = F−1φ(|ξ|2)F f .

Consequently, for all real r , and Imλ > 0,

∥(−∆− λ2)−1∥H r→H r = ∥F−1(|ξ|2 − λ2)−1F∥L2→L2

= sup
t≥0

|t − λ2|−1

≤ 1

|λ| Imλ
,

where for the inequality we used the fact that

λ2 = (Reλ)2 − (Imλ)2 + 2i Reλ Imλ,

and hence

dist(λ2, [0,∞)) =

{
2 Imλ|Reλ|, (Reλ)2 ≥ (Imλ)2,

|λ|2, (Reλ)2 ≤ (Imλ)2.
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Construction of the perturbed resolvent (−∆+ V − λ2)−1 when Imλ ≫ 0.

Using

∥(−∆− λ2)−1∥H r→H r = sup
t≥0

|t − λ2|−1 ≤ 1

|λ| Imλ
, when Imλ > 0,

when |λ| Imλ is large enough4, we can use a geometric series (I − X )−1 =
∑∞

k=0 X
k to invert

(−∆+ V − λ2)(−∆− λ2)−1 = I + V (−∆− λ2)−1.

and obtain

(−∆+V −λ2)−1 = (−∆−λ2)−1(I +V (−∆−λ2)−1)−1, ∥(−∆+V −λ2)−1∥H r→H r ≤ 2

|λ| Imλ
.

This justifies defining, for A sufficiently large,

w(t, x) =
1

2π

∫ ∞+iA

−∞+iA

e−itλ(−∆+ V − λ2)−1 f̃ (λ, x)dλ, f̃ (λ, x) =

∫ T1

T0

e isλf (s, x)ds,

when f ∈ C∞
c ([T0,T1]× Rn), because |f̃ (λ)| ≤ Cf e

−T0 Imλ/|λ| when Imλ > 0.
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Solution of the perturbed wave equation I
Theorem. Let V ∈ C∞

c (Rn), f ∈ C∞
c ([T0,T1]× Rn). For A large enough, the function

w(t, x) =
1

2π

∫ ∞+iA

−∞+iA

e−itλ(−∆+ V − λ2)−1 f̃ (λ, x)dλ, f̃ (λ, x) =

∫ T1

T0

e isλf (s, x)ds,

solves (∂2
t −∆+ V )w = f and w(t, x) = 0 for t ≤ T0.

Proof. We first show independence of the choice of such A by proving that if B > A, then

w(t, x) =
1

2π

∫ ∞+iB

−∞+iB

e−itλ(−∆+ V − λ2)−1 f̃ (λ, x)dλ.

This follows by deformation of contour together with

lim
L→±∞

∫ L+iB

L+iA

e−itλ(−∆+ V − λ2)−1 f̃ (λ, x)dλ = 0,

where we used ∥(−∆+ V − λ2)−1∥H r→H r ≤ 2
|λ| Imλ

and ∥f̃ (λ, ·)∥H r ≤ Cf e
−T0B/|λ|.
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Solution of the perturbed wave equation II
We have defined, independently of A large enough,

w(t, x) =
1

2π

∫ ∞+iA

−∞+iA

e−itλ(−∆+ V − λ2)−1 f̃ (λ, x)dλ, f̃ (λ, x) =

∫ T1

T0

e isλf (s, x)ds.

Estimating as before, i.e. ∥(−∆+ V − λ2)−1∥H r→H r ≤ 2
|λ| Imλ and ∥f̃ (λ, ·)∥H r ≤ Cf e

−T0A/|λ|3,
justifies differentiation under the integral sign to show that

(∂2
t −∆+ V )w = f .

It remains to show that w(t, x) = 0 for all t < T0. For that we let A → ∞ in the estimate

|w(t, x)| = 1

2π
etA

∣∣∣ ∫ ∞

−∞
e−itµ(−∆+ V − (µ+ iA)2)−1 f̃ (µ+ iA, x)dµ

∣∣∣ ≤ Cf e
(t−T0)A.

To analyze w(t, x) when t is large, we must deform the contour downward, rather than upward.

This means analyzing the perturbed resolvent (−∆+ V − λ2)−1 for a larger set of values of λ.
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The perturbed resolvent (−∆+ V − λ2)−1 in the upper half plane
We used a geometric series to define, for Imλ large enough,

(−∆+ V − λ2)−1 = (−∆− λ2)−1(I + V (−∆− λ2)−1)−1. (∗)
The inclusion from compactly supported H r+2 functions into H r is compact, so λ 7→ V (−∆− λ2)−1

is a holomorphic family of compact operators.

Recall that
▶ K being compact means that for any ε > 0 there is a finite rank F such that ∥K − F∥ < ε,
▶ H r+ε ⊂ H r is compact on a torus because (1−∆)−ε/2 is (use partial Fourier sums to find F ).
▶ λ 7→ F (λ) is a holomorphic family of operators means λ 7→ ⟨F (λ)u, v⟩ is holomorphic for all u, v .

Thus (∗) extends meromorphically to the upper half plane Imλ > 0 by the

Analytic Fredholm Theorem. Let H be a Hilbert space, let Ω ⊂ C be a connected open set, and let
λ 7→ K (λ) be a holomorphic family of compact operators on H for λ ∈ Ω. If (I − K (λ0))

−1 exists for
some λ0 ∈ Ω, then λ 7→ (I − K (λ))−1 is a meromorphic family of (Fredholm) operators for λ ∈ Ω.

Moreover, poles of this meromorphic continuation occur at precisely those λ which are square roots of
eigenvalues of (−∆+ V − λ2) in C \ [0,∞). Indeed, the proof below shows that I + V (−∆− λ2)−1

is invertible if and only if it is injective, and the same follows for −∆+ V − λ2 by inverting (∗).5
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Analytic Fredholm Theorem
Theorem. If λ 7→ K (λ) is holomorphic for λ ∈ Ω, K (λ) compact, Ω ⊂ C connected and open, and if
(I − K (λ0))

−1 exists for some λ0 ∈ Ω, then λ 7→ (I − K (λ))−1 is meromorphic for λ ∈ Ω.

Proof. Let D ⊂ Ω be a disk such that ∥K (λ)− K (λ′)∥ < 1/2 for any λ, λ′ ∈ D. Suppose there is
λ′ ∈ D such that I − K (λ′) is invertible, and pick a finite rank F such that ∥K (λ′)− F∥ < 1/2, so
that λ 7→ (I − K (λ) + F )−1 is holomorphic for λ ∈ D. Then

(I − K (λ))(I − K (λ) + F )−1 = I − F (I − K (λ) + F )−1 := I − G (λ).

Thus I − K (λ) is invertible if and only if I − G (λ) is, i.e. if and only if u − G (λ)u = f has a unique
solution. After substituting u = f + v , solving u − G (λ)u = f is equivalent to solving

v = G (λ)(f + v). (∗)

Any solution v must be in the range of F , i.e. of the form v =
∑N

j=1 cj(λ)ej , where {e1, . . . , eN} is an
orthonormal basis of the range of F . Plugging this into (∗) and pairing both sides with ek gives

ck(λ) = ⟨G (λ)(f +ΣN
j=1cj(λ)ej), ek⟩ = ⟨G (λ)f , ek⟩+ΣN

j=1⟨G (λ)ej , ek⟩cj(λ).

By linear algebra, this system of equations defines a meromorphic function λ 7→ ck(λ) for λ ∈ D.
This proves the result for λ ∈ D. By connectedness,6 it follows for λ ∈ Ω.
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Interlude on the spectrum of −∆+ V
Recall that the spectrum of −∆ is [0,∞). We showed that, wherever all inverses exist,

−∆+ V − z = (I + V (−∆− z)−1)(−∆− z),

(−∆+ V − z)−1 = (−∆− z)−1(I + V (−∆− z)−1)−1.

By the Analytic Fredholm Theorem, this shows that the spectrum of −∆+V is discrete in C \ [0,∞).
Similarly, switching the roles of −∆ and −∆+ V ,

−∆− z = (I − V (−∆+ V − z)−1)(−∆+ V − z)

(−∆− z)−1 = (−∆+ V − z)−1(I − V (−∆+ V − z)−1)−1.

This shows that the spectrum of −∆+ V contains [0,∞). If u is an eigenfunction of −∆+ V with
eigenvalue z , then

0 = ⟨(−∆+ V − z)u, u⟩ = ∥∇u∥2 + ⟨Vu, u⟩ − z∥u∥2.

Thus

Im z =
Im⟨Vu, u⟩

∥u∥2
∈ [min ImV ,max ImV ], Re z =

∥∇u∥2 + ⟨Vu, u⟩
∥u∥2

≥ minReV .
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Long time perturbed wave asymptotics I
Hence (−∆+ V − λ2)−1 : H r → H r is meromorphic for Imλ > 0. When |λ| Imλ is large enough, it is
also holomorphic and obeys

∥(−∆+ V − λ2)−1∥H r→H r ≤ 2

|λ| Imλ
.

Parallel to the proof that w(t, x) = 0 when t < T0, we deform the contour downward in the formula

w(t, x) =
1

2π

∫ ∞+iA

−∞+iA

e−itλ(−∆+ V − λ2)−1 f̃ (λ, x)dλ, f̃ (λ, x) =

∫ T1

T0

e isλf (s, x)ds,

to a line Imλ = ε chosen to avoid any resolvent poles (i.e. eigenvalues), to obtain

w(t, x) = −
∑

{λj : Imλj>ε}

iRλj (t, x) + E (t, x),

where Rλj (t, x) is the residue of e−itλ(−∆+ V − λ2)−1 f̃ (λ, x) at the pole λj , and

|E (t, x)| = 1

2π
etε

∣∣∣ ∫ ∞

−∞
e−itµ(−∆+ V − (µ+ iA)2)−1 f̃ (µ+ iA, x)dµ

∣∣∣ ≤ Cf e
tε.

Note that the remainder E , though it grows exponentially, does so more slowly than the eigenvalue
terms. To get a better remainder we will go into the lower half plane.
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Meromorphic continuation of the cutoff perturbed resolvent χ(−∆+ V − λ2)−1χ.
To go into the lower half plane, we will take advantage of the compact supports of f and V . We take
χ ∈ C∞

c (Rn) such that χV = V and χf = f , and we will study

χ(x)w(t, x) =
1

2π

∫ ∞+iA

−∞+iA

e−itλχ(x)(−∆+ V − λ2)−1χf̃ (λ, x)dλ, f̃ (λ, x) =

∫ T1

T0

e isλf (s, x)ds,

To analyze the cutoff reoslvent, we multiply the identity

(−∆+ V − λ2)−1 = (−∆− λ2)−1(I + V (−∆− λ2)−1)−1,

by χ on both sides, to obtain

χ(−∆+ V − λ2)−1χ = χ(−∆− λ2)−1(I + V (−∆− λ2)−1)−1χ

= χ(−∆− λ2)−1χ(I + V (−∆− λ2)−1χ)−1,

where we verify the last equality for Imλ ≫ 0 using a geometric series:

(I − Y )−1χ = χ+ Yχ+ Y 2χ+ · · · = χ(I − Yχ)−1, where Y = −V (−∆− λ2)−1 and χY = Y ,

and then extend it by meromorphic continuation to Imλ > 0.

This identity and the analytic Fredholm theorem show that meromorphic continuation of
χ(−∆+ V − λ2)−1χ follows from holomorphic continuation of χ(−∆− λ2)−1χ, and this
holomorphic continuation is what we show next. 17 / 26



The free resolvent in terms of the wave propagator

To analyze the free resolvent, we use a Fourier–Laplace transform to relate it to the free wave
propagator U(t, x) that we analyzed before. By direct calculation,7

(|ξ|2 − λ2)−1 =

∫ ∞

0

e itλ
sin t|ξ|
|ξ|

dt, for Imλ > 0.

Hence, by the self-adjoint functional calculus, (or by a Fourier transform in ξ),

(−∆− λ2)−1 =

∫ ∞

0

e itλ
sin t

√
−∆√

−∆
dt, for Imλ > 0,

and the formula simplifies nicely8 when n = 1 or n = 3. To be able to continue into the lower half
plane, we multiply on both sides by χ ∈ C∞

c (Rn) to obtain

χ(−∆− λ2)−1χ =

∫ ∞

0

e itλχ
sin t

√
−∆√

−∆
χdt, for Imλ > 0.
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Continuing the cutoff free resolvent into the lower half plane

When n ≥ 3 odd, the strong Huygens principle shows that χ sin t
√
−∆√

−∆
χ is supported in

{x ∈ suppχ such that |x − y | = t for some y ∈ suppχ}.

Plugging this into the formula

χ(−∆− λ2)−1χ =

∫ ∞

0

e itλχ
sin t

√
−∆√

−∆
χdt, for Imλ > 0,

gives

χ(−∆− λ2)−1χ =

∫ T

0

e itλχ
sin t

√
−∆√

−∆
χdt, for Imλ > 0,

if T is large enough (depending on suppχ), and this last expression extends to an entire function of λ.

When n is even, we get a
∫∞
T

term which we must also analyze. Using the fact that for T large the

integral kernel of χ sin t
√
−∆√

−∆
χ is in C∞

c (Rn × Rn), and a deformation of contour, allows us to

holomorphically continue this term, although the result is not entire in λ.9
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Continuing the cutoff perturbed resolvent into the lower half plane
When n ≥ 3 odd, we showed that for any χ ∈ C∞

c (Rn) there is T > 0 such that

χ(−∆− λ2)−1χ =

∫ T

0

e itλχ
sin t

√
−∆√

−∆
χdt,

with the formula initially defined for Imλ > 0 and then extended holomorphically to λ ∈ C. Since
sin t

√
−∆√

−∆
: L2 → H1, we see that χ(−∆− λ2)−1χ : L2 → L2 is compact.

Thus the Analytic Fredholm Theorem shows that, if χV = V , then

χ(−∆+ V − λ2)−1χ = χ(−∆− λ2)−1χ(I + Vχ(−∆− λ2)−1χ)−1

continues meromorphically to λ ∈ C, with poles called resonances.10

To be able to apply contour deformation in our study of waves, we also need an estimate on the norm
of the cutoff resolvent. We automatically have

∥χ(−∆+ V − λ2)−1χ∥L2→L2 ≤ 2∥χ(−∆− λ2)−1χ∥L2→L2 ,

when ∥χ(−∆− λ2)−1χ∥L2→L2 is small enough, so we will estimate ∥χ(−∆− λ2)−1χ∥L2→L2 .
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Estimates on the continuation of the free resolvent
For n ≥ 3 odd,11 integrating by parts once in the formula

χ(−∆− λ2)−1χ =

∫ T

0

e itλχ
sin t

√
−∆√

−∆
χdt, for λ ∈ C,

gives

χ(−∆− λ2)−1χ =
e itλ

iλ
χ
sin t

√
−∆√

−∆
χ
∣∣∣t=T

t=0
−
∫ T

0

e itλ

iλ
χ cos t

√
−∆χdt,

and hence

∥χ(−∆− λ2)−1χ∥L2→L2 ≤ Cχ
e−T Imλ

|λ|
.

Thus, for any M > 0, we have

∥χ(−∆− λ2)−1χ∥L2→L2 ≤ Cχ,M

|λ|
, when Imλ ≥ −M.

Since ∥χ(−∆+ V − λ2)−1χ∥L2→L2 ≤ 2∥χ(−∆− λ2)−1χ∥L2→L2 when ∥χ(−∆− λ2)−1χ∥L2→L2 is
small enough, that implies

∥χ(−∆− λ2)−1χ∥L2→L2 ≤ Cχ,M

|λ|
, when Imλ ≥ −M and |λ| is large enough.
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Long time perturbed wave asymptotics II
Thus, for any M > 0, χ(−∆+ V − λ2)−1χ : L2 → L2 is meromorphic for Imλ > −M. When |λ| is
large enough, it is also holomorphic and obeys

∥χ(−∆+ V − λ2)−1χ∥L2→L2 ≤ C/|λ|.

We take χ such that χf = f , and deform the contour downward in the formula

χw(t, x) =
1

2π

∫ ∞+iA

−∞+iA

e−itλχ(−∆+ V − λ2)−1χf̃ (λ, x)dλ, f̃ (λ, x) =

∫
e isλf (s, x)ds,

to the line Imλ = −M, to obtain

χw(t, x) = −
∑

{λj : Imλj>−M}

iRλj (t, x) + E (t, x),

where Rλj (t, x) is the residue of e−itλχ(−∆+ V − λ2)−1χf̃ (λ, x) at the pole λj , and

∥E (t, x)∥L2 =
1

2π
e−Mt

∥∥∥ ∫ ∞

−∞
e−itµχ(−∆+ V − (µ− iM)2)−1χf̃ (µ− iM, x)dµ

∥∥∥
L2

≤ Cf e
−M(t−T1).

As we saw before, poles with Imλ > 0 correspond to eigenvalues of −∆+V . Poles with Imλ ≤ 0 are
called resonances.
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Interpretation

Let V be real valued, and let w measure displacement from equilibrium of a string or membrane, and
write our wave equation in the form

∂2
t w = f +∆w − Vw .

Then, recalling Newton’s law F = ma, and using units such that the mass density is one, then

▶ f is the outside driving force (independent of w),

▶ ∆w is the restoring force due to tension,

▶ and Vw is a force, proportional to displacement, which pushes towards equilibrium when V > 0
and away when V < 0.

Correspondingly, growing modes, i.e. resolvent poles in the open upper half plane, can occur only
when minV < 0. One can also show that if minV = 0, then there are no poles in the closed upper
half plane; see Section 5 of Hintz’s lecture notes.

Some examples can be found here: https://www.cs.cornell.edu/~bindel/cims/resonant1d/,
see in particular Figures 1, 2, and 10.
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Outgoing and incoming solutions

Let R(λ) = (−∆+ V − λ2)−1 and ImA ≫ 0. The forward solution to (∂2
t −∆+ V )w = f is

w(t, x) =
1

2π

∫ ∞+iA

−∞+iA

e−itλR(λ)f̃ (λ, x)dλ, f̃ (λ, x) =

∫ T1

T0

e isλf (s, x)ds.

The resolvent R(λ) for Imλ > 0, and the meromorphic continuation of χR(λ)χ, are called outgoing.

We can similarly obtain the backward solution by writing

w(t, x) =
1

2π

∫ ∞−iA

−∞−iA

e−itλR(λ)f̃ (λ, x)dλ, f̃ (λ, x) =

∫ T1

T0

e isλf (s, x)ds.

The resolvent R(λ) for Imλ < 0, and the meromorphic continuation of χR(λ)χ, are called incoming.

Sometimes people use different conventions for the square root/Fourier transform, interchanging the
upper and lower half plane; the significant thing is that outgoing goes with forward, and incoming
goes with backward. The formulas and results for the forward and backward solutions are all basically
the same due to the time symmetry of the wave equation.
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Even dimensions

In even dimensions, the meromorphic continuation is not to C, but to the logarithmic Riemann
surface. This means more complicated contour deformation arguments are needed, including
estimates near the origin.

We already saw from the free case that, even in the absence of eigenvalues and resonances, in general
decay can be no better than

|w(t, x)| ≤ Cf t
−n+1;

such a rate comes from the singularity of the resolvent at λ = 0 in the integral

w(t, x) =
1

2π

∫
C

e−itλ(−∆+ V − λ2)−1 f̃ (λ, x)dλ,

where C is a contour in C \ {λ ∈ C : Reλ = 0 and Imλ ≤ 0}, chosen to avoid the upper half plane
as much as possible. But this singularity can be complicated, especially in dimension two; see Jensen
and Nenciu’s 2001 Reviews in Mathematical Physics paper, and Vasy’s 2021 Pure and Applied
Analysis paper.
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References

The presentation above follows Sections 3.1 and 3.2 of Dyatlov and Zworski’s Mathematical Theory
of Scattering Resonances, Hintz’s lecture notes
http://math.mit.edu/~phintz/snap19/index.html, and Lectures 7 and 8 of Dyatlov’s lecture
notes http://math.mit.edu/~dyatlov/18.156/. The proof of the analytic Fredholm theorem
follows Theorem VI.14 of Volume 1 of Reed and Simon’s Methods of Mathematical Physics.
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Exercises.

The exercises marked with a * are more central to the course. (They are not the more difficult ones.)

1. Show that

(∂2
t + H)w(t) = f (t), f ∈ C∞

c ([T0,T1];Cm),

has a unique solution which vanishes for t < T0 by showing that the difference of any two solutions
has a Fourier–Laplace transform which is everywhere zero.

2. Let H be an m×m matrix. Show that (H −λ2) is invertible if and only if λ2 is not an eigenvalue
of H. Use Cramer’s rule to show that, in a neighborhood of any λj such that λ2

j is an eigenvalue of H,
we have a Laurent expansion

(H − λ2)−1 =
∞∑

k=−K

Ak(λ
2 − λ2

j )
k ,

for some K ≥ 1 and some matrices Ak . Multiply this equation on the left by (H − λ2) = (H − λ2
j ) +
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(λ2
j − λ2) and match like powers of (λ2 − λ2

j ) to show that

(H − λ2
j )Ak =


0, k = −K ,

I + Ak−1, k = 0,

Ak−1, otherwise.

Conclude that A−K maps into the eigenspace of H at λ2
j , and if K > 1, then Ak maps into the

generalized eigenspace of H at λ2
j when −K < k < 0.

3. Let H ∈ C and f ∈ C∞
c ([T0,T1]). Show that if A is sufficiently large, then

w(t) =
1

2π

∫ ∞+iA

−∞+iA

e−itλ(H − λ2)−1 f̃ (λ)dλ,

solves

∂2
t w + Hw = f , w(t) = 0 for t ≤ T0.

Evaluate w(t) for t ≥ T1 by shifting the contour down. Distinguish the cases H ̸= 0 and H = 0.
Compare your the result to that of Excercise 1 from Part 1.

4. * Let V ∈ C∞
c (Rn).
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1. Evaluate ∥(−∆− λ2)−1∥L2→L2 = supt≥0 |t − λ2|−1 in terms of Reλ and Imλ.

2. Use the above result to find an open set of values of λ, depending on ∥V ∥L∞ , such that
I + V (−∆− λ2)−1 : L2 → L2 can be inverted using a geometric series.

3. In the case that V is real valued, find a larger open set of values of λ, depending on minV , such
that (−∆+ V − λ2)−1 exists, and find a corresponding bound on ∥(−∆+ V − λ2)−1∥L2→L2 .

Hint: Use the fact that −∆+ V is self-adjoint (see Hassannezhad’s Example 1.7 and Lemma
1.5) and treat (−∆+ V − λ2)−1 the way we treated (−∆− λ2)−1.

5. * Let V ∈ C∞
c (Rn).

1. By examining the proof of the Analytic Fredholm Theorem, show that, for any λ in the upper
half plane, (I + V (−∆− λ2)−1) : H r → H r is invertible if and only if it is injective.

2. Use (−∆+ V − λ2)−1 = (−∆− λ2)−1(I + V (−∆− λ2)−1)−1 to show that, for any λ in the
upper half plane, (−∆+ V − λ2) : H r → H r is invertible if and only if it is injective.

3. Show that the poles of (I + V (−∆− λ2)−1) : H r → H r in the upper half plane are independent
of r by showing that if u ∈ H r solves u + V (−∆− λ2)−1u = 0, then u ∈ C∞

c (Rn). Conclude
that poles of (−∆+ V − λ2)−1 in the upper half plane occur at precisely those λ which are
square roots of eigenvalues of (−∆+ V − λ2) in C \ [0,∞).
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6. Use a connectedness argument to complete the given proof of the Analytic Fredholm Theorem,
i.e. prove that if Ω′ ⊂ Ω is the set where the theorem holds, then Ω′ is both closed and open in Ω.

7.Verify the formula for the resolvent in terms of the wave propagator by evaluating the elementary
integral ∫ ∞

0

e itλ
sin t|ξ|
|ξ|

dt, for Imλ > 0.

8. * Evaluate
∫∞
0

e itλU(t, x)dt in the case n = 1 using the result of Exercise 3 of Part 1. Use the
result of Part 3 of Exercise 4 of Part 1 (even if you didn’t do that part) to evaluate it in the case n = 3
as well.

9. When n is even, write

χ(−∆− λ2)−1χ =

∫ T

0

e itλχ
sin t

√
−∆√

−∆
χdt +

∫ ∞

T

e itλχ
sin t

√
−∆√

−∆
χdt, for Imλ > 0.

For any T , the first term is entire as in the odd dimensional case. Choose T large enough that

χ sin t
√
−∆√

−∆
χ has a smooth integral kernel when t ≥ T , namely C χ(x)χ(y)

(t2−|x−y |2)
n−1
2

, so that the integral
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kernel of
∫∞
T

e itλχ sin t
√
−∆√

−∆
χdt is

C

∫ ∞

T

e itλ
χ(x)χ(y)

(t2 − |x − y |2) n−1
2

dt.

Use a deformation of contour to replace the integral over t ∈ [T ,∞) = T+[0,∞) with an integral over
t ∈ T + e iθ[0,∞), and conclude holomorphic continuation from arg λ ∈ (0, π) to arg λ ∈ (−θ, π − θ).
Repeat this for different values of θ to show holomorphic continuation to the universal cover of C \ 0.
This Riemann surface is called the logarithmic Riemann surface because it is the surface on which log
is entire. It is also the Riemann surface on which arg is everywhere smooth and is surjective onto R.

10. When n = 1 the methods presented above only show meromorphic continuation of χ(−∆+ V −
λ2)−1χ to C \ 0, not to C, because the free resolvent has a pole at 0 when n = 1. One way to rule
out accumulation of resonances at 0 is to use ODE methods. For λ ∈ C, let uL solve

−u′′L + VuL − λ2uL = 0 for all x , uL = e−iλx for x ≪ 0,

and
−u′′R + VuR − λ2uR = 0 for all x , uR = e iλx for x ≫ 0.

Let W be the Wronskian of uL and uR . Then W is entire and hence has discrete zeros. Show that
resonances occur precisely at the zeroes of W .
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11. Use the methods of Exercise 9 and an integration by parts to show that if n is even, then

∥χ(−∆− λ2)−1χ∥L2→L2 ≤ Cχ,M

|λ|
, when Imλ ≥ −M and |λ| is large enough.
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