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Variable wavespeeds

We now consider the wave equation

(∂2
t − c(x)2Δ)w(t, x) = f (t, x),

where f ∈ C∞
c ([T0,T1]× Rn) and c ∈ C∞(Rn) is everywhere positive and c − 1 compactly

supported, and where we seek a solution w obeying w = 0 when t ≤ T0.

Here c represents a wavespeed which can vary spatially, corresponding to variations in the medium
through which the wave propagates.

This can be done as before by writing, for A sufficiently large,

w(t, x) =
1

2π

� ∞+iA

−∞+iA

e−itλ(−c2Δ− λ2)−1 f̃ (λ, x)dλ, f̃ (λ, x) =

� T1

T0

e isλf (s, x)ds,

and we can study asymptotics as t → ∞ by shifting the contour down, but there are new challenges.
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Variable wavespeeds

Previously we had V ∈ C∞
c (Rn), and we wrote

(−Δ+ V − λ2)(−Δ− λ2)−1 = I + V (−Δ− λ2)−1.

We then used the facts that �V (−Δ− λ2)−1�L2→L2 is small when Imλ is large, and that
V (−Δ− λ2)−1 is a compact operator.

Now with c ∈ C∞(Rn) everywhere positive and c − 1 compactly supported, if we write as before

(−c2Δ− λ2)(−Δ− λ2)−1 = I + (1− c2)Δ(−Δ− λ2)−1,

the trouble begins with the fact that (1− c2)Δ(−Δ− λ2)−1 does not necessarily have small norm
anywhere and is not a compact operator; the new perturbation (1− c2)Δ, though still compactly
supported, is much bigger than the old one V .

To handle this, we will use a more elaborate parametrix construction, based on Sjöstrand–Zworski
black box scattering theory, applicable to also to more general situations where one operator is a
compactly supported perturbation of another.

3 / 22



A more general operator
Let

H =
n�

j,k=1

ajkDjDk +
n�

�=1

b�D� + V ,

where all the b�, V are in C∞
c (Rn), and the ajk are C∞, real valued, and equal the identity matrix

outside of a compact set. We assume moreover that H is elliptic in the sense that there is C > 0 such
that

n�

j,k=1

ajkξjξk ≥ |ξ|2/C , for all (x , ξ) ∈ Rn × Rn.

Examples to keep in mind:

� The variable wavespeed problem H = −c2Δ, c ∈ C∞(Rn; (0,∞)), c − 1 compactly supported.

� The potential perturbation problem H = −Δ+ V , V ∈ C∞
c (Rn), that we looked at in Part II.

� Laplacians with respect to Riemannian metrics H = −G−1
�n

j,k=1 ∂jGg
jk∂k , G =

�
det gjk , g

jk

is the inverse matrix to gjk , where gjk is a Riemannian metric equal to the Euclidean metric
outside of a compact set. That is to say, the gjk are C∞, positive definite, and equal the identity
matrix outside of a compact set.

(Don’t confuse H with the Sobolev space H r ; we will never raise the operator H to any power.)
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An example with large resolvent
We can make an example with large resolvent based on spherical harmonics small near a point. Let
ϕm be a sequence of eigenfunctions of the sphere,

−ΔSnϕm = λ2
mϕm, with λm → ∞, �ϕm�L2(Sn) = 1,

and such that there is a nonempty open U ⊂ Sn and a constant C such that

�ϕm�L2(U) ≤ e−λm/C , for every m.

Such a construction can be based on eigenfunctions concentrating on a great circle.1 Then take
χ ∈ C∞(Sn) which is 1 on Sn \ U and with suppχ �= Sn, and put um = χϕm. Then

�um�L2(Sn) ≥ 1− e−λm/C , �(−ΔSn − λ2
m)um�L2(Sn) ≤ �[−ΔSn ,χ]ϕn�L2(Sn) ≤ e−λm/C .

Let gjk be a metric on Rn which is Euclidean outside of a compact set and such that there is an open
set U � ⊂ Rn isometric to a neighborhood of supp um. Define the Laplacian

H = −G−1
n�

j,k=1

∂jGg
jk∂k , G =

�
det gjk , g jk is the inverse matrix to gjk .

Then the um, as functions in C∞
c (Rn), are a sequence of exponentially good quasimodes for H:

�um�L2(Rn) ≥ 1− e−λm/C , �(H − λ2
m)um�L2(Rn) ≤ e−λm/C , thus �χ(H − λ2

m)
−1χ�L2→L2 ≥ eλm/C .
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Polynomial resolvent estimates
Our goal in the remainder of the course is to prove that χ(H − λ2)−1χ extends meromorphically to
where χ(−Δ− λ2)−1χ extends holomorphically, and

�χ(H − λ2)−1χ�L2→L2 ≤ |λ|C ,
when either Imλ ≥ A or both − ln |Reλ| ≤ C Imλ and |Reλ| is large enough, for those H for which
it holds. (We have already seen that �χ(H − λ2

m)
−1χ�L2→L2 ≥ eλm/C occurs for certain H.) This is

enough to show that, for n odd, the forward solution w to (∂2
t +H)w = f ∈ C∞

c ([T0,T1]×Rn) obeys

χw(t, x) =
1

2π

� ∞+iA

−∞+iA

e−itλχ(−Δ+ V − λ2)−1χf̃ (λ, x)dλ, f̃ (λ, x) =

� T1

T0

e isλf (s, x)ds,

and, for any M,

χw(t, x) = −
�

{λj : Imλj>−M}
iRλj (t, x) + E (t, x),

with
|χE (t, x)| ≤ Ce−Mt ,

and similar bounds on all derivatives of E . The proof 2 is just as in Part II, but taking advantage of
the arbitrariness of N in the Paley–Wiener estimate |∂α f̃ (λ, x)| ≤ Cα,Ne

−T0 Imλ|λ|−N .
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Semiclassical inversion
Returning now to the general problem, let

P = h2H =
n�

j,k=1

ajkhDjhDk + h
n�

�=1

b�hD� + h2V , p =
n�

j,k=1

ajkξjξk ≥ |ξ|2/C ,

where h > 0 is a (small) semiclassical parameter so that p is the semiclassical principal symbol of P .
Then p + 1 is an elliptic symbol:

(1 + |ξ|2)/C ≤ p + 1 ≤ C (1 + |ξ|2),

and consequently P + I is invertible for h small enough as in Hezari’s Lecture 5, Slide 5. Indeed, let

P̃ = (P+I )(−h2Δ+I )−1, p̃ =
p + 1

|ξ|2 + 1
, Op(p̃−1)u(x) =

1

(2πh)n

�
e i(x−y)·ξ/hp̃(x , ξ)−1u(y)dy dξ,

so that p̃ is the semiclassical principal symbol of P̃ , and 1/C ≤ p̃ ≤ C . Then

Op(p̃−1)P̃ = Op(1) + OL2→L2(h) = I + OL2→L2(h)

P̃ Op(p̃−1) = Op(1) + OL2→L2(h) = I + OL2→L2(h)

�
=⇒ P̃−1 exists and �P̃−1�L2→L2 ≤ C .
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Resolvent mapping properties

Thus, for h > 0 small enough, with

P = h2H =
n�

j,k=1

ajkhDjhDk + h
n�

�=1

b�hD� + h2V , P̃ = (P + I )(−h2Δ+ I )−1,

we have established that P̃ is bijective L2 → L2.

Combining this with the fact that −h2Δ+ I is bijective H2 → L2, we conclude that P + I , and hence
H + h−2, are also bijective H2 → L2. In other words the resolvent

R(λ) = (H − λ2)−1,

exists and is bijective L2 → H2 when3 Reλ = 0 and Imλ � 0.

(Hence, if H is symmetric on H2(Rn), then it is self-adjoint and semi-bounded.)4
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Openness of the resolvent set
Thus the resolvent

R(λ) = (H − λ2)−1,

exists when Reλ = 0 and Imλ � 0.

Using the standard resolvent identity, as in Hassannezhad’s Exercise 1.7,

R(λ)− R(λ0) = (λ2 − λ2
0)R(λ)R(λ0),

we can write
R(λ)(I + (λ2

0 − λ2)R(λ0)) = R(λ0),

and use a geometric series to show there is a neighborhood5 of this ray where R(λ) exists.

To go further, we use an elaboration of this resolvent identity due to Vodev. We will write

R(λ)(I + K (λ,λ0)) = F (λ,λ0),

where λ �→ K (λ,λ0) and λ �→ F (λ,λ0) are both holomorphic families of operators, with K being
compact, so that the analytic Fredholm theorem is applicable.
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Resolvent identity
Denote the resolvents

R0(λ) = (−Δ− λ2)−1, R(λ) = (H − λ2)−1,

and let λ0, λ be such that both resolvents exist at both points. Thus 0 subscripts denote objects we
already understand.

Let χ1 ∈ C∞
c (Rn) be 1 near the set where H �= −Δ, and write

R(λ)− R(λ0) = (λ2 − λ2
0)R(λ)R(λ0)

= (λ2 − λ2
0)
�
R(λ)χ1R(λ0) + R(λ)(1− χ1)R(λ0)

�
.

(∗)

The first term is already of the form we want to be able to write

R(λ)(I + K (λ,λ0)) = F (λ,λ0),

with K compact, because χ1R(λ0) is compact (recall that the resolvent maps L2 → H2).

The second term needs some more work because (1− χ1)R(λ0) is not compact; we will use the fact
that (1− χ1)H = −(1− χ1)Δ to write this term in terms of R0(λ).
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To bring the second term of

R(λ)− R(λ0) = (λ2 − λ2
0)R(λ)R(λ0)

= (λ2 − λ2
0)
�
R(λ)χ1R(λ0) + R(λ)(1− χ1)R(λ0)

�
.

(∗)

to a suitable form, we write it in terms of R0(λ) using

R(λ)(1− χ1) = R(λ)(1− χ1)(−Δ− λ2)R0(λ)

= R(λ)(−Δ− λ2)(1− χ1)R0(λ) + R(λ)[−Δ,χ1]R0(λ)

= {(1− χ1) + R(λ)[−Δ,χ1]}R0(λ).

(∗∗)

Inserting (∗∗) into (∗) gives

R(λ)− R(λ0) = (λ2 − λ2
0)
�
R(λ)χ1R(λ0) + {(1− χ1) + R(λ)[−Δ,χ1]}R0(λ)R(λ0)

�
.

Bringing the R(λ) terms to the left, the other terms to the right, and factoring, gives

R(λ)(I + K (λ,λ0)) = F (λ,λ0), where

K (λ,λ0) = (λ2
0−λ2)

�
χ1R(λ0)+[−Δ,χ1]R0(λ)R(λ0)

�
, F (λ,λ0) = R(λ0)+(λ2−λ2

0)(1−χ1)R0(λ)R(λ0).

Note that λ �→ K (λ,λ0) and λ �→ F (λ,λ0) are both holomorphic families of operators, with K being
compact, so that the analytic Fredholm theorem is applicable.
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Meromorphic continuation of the resolvent to the upper half plane
Thus, with

R0(λ) = (−Δ− λ2)−1, R(λ) = (H − λ2)−1,

we have obtained
R(λ)(I + K (λ,λ0)) = F (λ,λ0),

where

K (λ,λ0) = (λ2
0 − λ2)

�
χ1R(λ0) + [−Δ,χ1]R0(λ)R(λ0)

�
,

F (λ,λ0) = R(λ0) + (λ2 − λ2
0)(1− χ1)R0(λ)R(λ0),

for λ and λ0 both pure imaginary and sufficiently large (that is where we have defined the resolvent
R). By the analytic Fredholm theorem, λ �→ (I +K (λ,λ0))

−1 is meromorphic in the upper half plane,
since K is compact and the inverse exists when λ = λ0. Thus we have constructed the resolvent

R(λ) = F (λ,λ0)(I + K (λ,λ0))
−1,

as a meromorphic family of operators in the upper half plane.

Next we will investigate pole-free regions and estimates.
12 / 22



Semiclassical estimates away from the real axis I
We consider (H − λ2)−1 when Imλ � 0. We will show, for A large enough, the a priori estimate

�u�L2 ≤ C

|λ|�(H − λ2)u�L2 , when Imλ ≥ A. (∗)

Since we already know that (H − λ2)−1 is meromorphic, that will imply it has no poles when
Imλ ≥ A and

�(H − λ2)−1�L2→L2 ≤ C

|λ| , when Imλ ≥ A.

We will again use semiclassical estimates and prove (∗) by proving there is a constant C0 such that

|z | = 1 and dist(z , [0,∞)) ≥ C0h =⇒ �u�L2 ≤ C

h
�(P − z)u�L2 , where P = h2H, (∗∗)

and apply this with h = |λ|−1, z = h2λ2; if ±Reλ � 0, then Im z = 2h2 Reλ Imλ ≈ ±2h Imλ.
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Semiclassical estimates away from the real axis II
We will prove that there is a constant C0 such that

|z | = 1 and dist(z , [0,∞)) ≥ C0h =⇒ �u�L2 ≤ C

h
�(P − z)u�L2 , (∗∗)

using the fact that we ‘almost’ have P ≥ 0. We will consider real and imaginary parts separately.

Recall that we defined P̃ = (P + I )(−h2Δ+ I )−1 and found that, uniformly for h > 0 small enough,

�P̃�L2→L2 ≤ C , and �P̃−1�L2→L2 ≤ C .

Hence we use a semiclassical Sobolev norm and write �u�H2
h
:= �(−h2Δ+ I )u�L2 , so that

�P + I�H2
h→L2 ≤ C , and �(P + I )−1�L2→H2

h
≤ C .

Next, since P =
�n

j,k=1 ajkhDjhDk + h
�n

�=1 b�hD� + h2V , and
�n

j,k=1 ajkξjξk ≥ |ξ|2/C , we get

� n�

j,k=1

ajkhDjhDku, u
�
L2

=
n�

j,k=1

�ajkhDju, hDku�L2 − h
n�

j,k=1

(Dkajk)�hDju, u�L2 ,

and consequently, using also |�hDju, u�L2 | ≤ �hDju�2L2 + �u�2L2 , we get

| Im�Pu, u�L2 | ≤ Ch(�h∇u�2L2 + �u�2L2) ≤ C1h�u�2H2
h
.
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Semiclassical estimates away from the real axis III
We are proving that there is a constant C0 such that

|z | = 1 and dist(z , [0,∞)) ≥ C0h =⇒ �u�L2 ≤ C

h
�(P − z)u�L2 . (∗∗)

We have shown that, with �u�H2
h
:= �(−h2Δ+ I )u�L2 , we have

�P + I�H2
h→L2 ≤ C , and �(P + I )−1�L2→H2

h
≤ C , and | Im�Pu, u�L2 | ≤ C1h�u�H2

h
.

The last implies
Im�(P − z)u, u�L2 ≤ C1h�u�2H2

h
− Im z�u�2L2 ,

which we rewrite as
Im z�u�2L2 ≤ C1h�u�2H2

h
+ �(P − z)u�L2�u�L2

Next use

�u�H2
h
≤ �(P + I )−1(P − z)u�H2

h
+ �(P + I )−1(z + 1)u�H2

h
≤ C�(P − z)u�L2 + C3�u�L2 .

That leads to

(Im z − C2h)�u�2L2 ≤ C

h
�(P − z)u�2L2 ,

which gives (∗∗) when Im z ≥ C0h. Arguing similarly with − Im z and −Re z gives the rest of (∗∗).6
15 / 22

(P+I)^{-1}(P+I)u

C_3

ab <= (1/2e)a^2 + (e/2)b^2



Solution to the wave equation

Thus we have shown, with R(λ) = (H − λ2)−1, that

�R(λ)� ≤ C

|λ| , when Imλ ≥ A.

This shows that

w(t, x) =
1

2π

� ∞+iA

−∞+iA

e−itλR(λ)f̃ (λ, x)dλ, f̃ (λ, x) =

�
e isλf (s, x)ds,

solves (∂2
t + H)w(t, x) = f (t, x), with w(t, x) = 0 when t � 0.

To study asymptotics as t → ∞, we will deform the contour into the lower half plane. We first
establish meromorphic continuation of the resolvent, using an elaboration of the above resolvent
identity due to Vodev.
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Vodev’s identity I
Our previous resolvent identity

R(λ)(I + K (λ,λ0)) = F (λ,λ0), where R0(λ) = (−Δ− λ2)−1, R(λ) = (H − λ2)−1,

K (λ,λ0) = (λ2
0−λ2)

�
χ1R(λ0)+[−Δ,χ1]R0(λ)R(λ0)

�
, F (λ,λ0) = R(λ0)+(λ2−λ2

0)(1−χ1)R0(λ)R(λ0),

is not suited to continuation of the cutoff resolvent because multiplying K and F on the left and right
by χ ∈ C∞

c (Rn) leads to factors of χR0(λ)R(λ0)χ. To continue across the real axis we need R0(λ) to
be multiplied by χ on both sides.
Accordingly, we go back to

R(λ)− R(λ0) = (λ2 − λ2
0)R(λ)R(λ0)

= (λ2 − λ2
0)
�
R(λ)χ1R(λ0) + R(λ)(1− χ1)R(λ0)

�
,

and instead write

R(λ)− R(λ0) = (λ2 − λ2
0)R(λ)R(λ0)

= (λ2 − λ2
0)
�
R(λ)χ1(2− χ1)R(λ0) + R(λ)(1− χ1)(1− χ1)R(λ0)

�
.

The first term works just as well as before, and now the second term has an extra factor of (1− χ1)
which will be useful.
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Vodev’s identity II
Now proceed from

R(λ)− R(λ0) = (λ2 − λ2
0)R(λ)R(λ0)

= (λ2 − λ2
0)
�
R(λ)χ1(2− χ1)R(λ0) + R(λ)(1− χ1)(1− χ1)R(λ0)

�
.

and plug in the same identity from before

R(λ)(1− χ1) = {(1− χ1) + R(λ)[−Δ,χ1]}R0(λ)

but this time also use the analogous identity7

(1− χ1)R(λ0) = R0(λ0){(1− χ1) + [−Δ,χ1]R(λ0)},
to obtain

R(λ)− R(λ0) = (λ2 − λ2
0)
�
R(λ)χ1(2− χ1)R(λ0)+

{(1− χ1) + R(λ)[−Δ,χ1]}R0(λ)R0(λ0){(1− χ1) + [−Δ,χ1]R(λ0)}
�
.

Now the only instance of two adjacent resolvents is R0(λ)R0(λ0), and there we use our original
resolvent identity

(λ2 − λ2
0)R0(λ)R0(λ0) = R0(λ)− R0(λ0).
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Vodev’s identity III
R(λ)− R(λ0) = (λ2 − λ2

0)R(λ)R(λ0)

= (λ2 − λ2
0)
�
R(λ)χ1(2− χ1)R(λ0) + R(λ)(1− χ1)(1− χ1)R(λ0)

�

= (λ2 − λ2
0)
�
R(λ)χ1(2− χ1)R(λ0)+

{(1− χ1) + R(λ)[−Δ,χ1]}R0(λ)R0(λ0){(1− χ1) + [−Δ,χ1]R(λ0)}
�

= (λ2 − λ2
0)R(λ)χ1(2− χ1)R(λ0)+

{(1− χ1) + R(λ)[−Δ,χ1]}
�
R0(λ)− R0(λ0)

�
{(1− χ1) + [−Δ,χ1]R(λ0)}.

Bringing the R(λ) terms to the left, the other terms to the right, and factoring, gives

R(λ)(I + K (λ,λ0)) = F (λ,λ0), where

K (λ,λ0) = (λ2
0 − λ2)χ1(2− χ1)R(λ0) + [−Δ,χ1]

�
R0(λ)− R0(λ0)

�
{(1− χ1) + [−Δ,χ1]R(λ0)},

F (λ,λ0) = R(λ0) + (1− χ1)
�
R0(λ)− R0(λ0)

�
{(1− χ1) + [−Δ,χ1]R(λ0)}.

Applying the analytic Fredholm theorem again gives (for Imλ > 0)

R(λ) = F (λ,λ0)(I + K (λ,λ0))
−1. 19 / 22



Meromorphic continuation of the resolvent to the lower half plane
Thus we have, for Imλ, Imλ0 > 0, away from any poles,

R(λ) = F (λ,λ0)(I + K (λ,λ0))
−1,

F (λ,λ0) = R(λ0) + (1− χ1)
�
R0(λ)− R0(λ0)

�
{(1− χ1) + [−Δ,χ1]R(λ0)},

K (λ,λ0) = (λ2
0 − λ2)χ1(2− χ1)R(λ0) + [−Δ,χ1]

�
R0(λ)− R0(λ0)

�
{(1− χ1) + [−Δ,χ1]R(λ0)},

take χ ∈ C∞
c (Rn) such that χχ1 = χ1, and multiply on the left and right to obtain

χRχ = χF (I + K )−1χ = χFχ(I + Kχ)−1, (∗)
where we justify the second equality in two steps: 1) if λ0 is fixed and λ is sufficiently close to λ0,
then �K (λ,λ0)�L2→L2 < 1 and we can use a convergent geometric series and χK = K to write

(I + K )−1χ = (I − K + K 2 − · · · )χ = χ(I − Kχ+ KχKχ− · · · ) = χ(I + Kχ)−1,

and 2) use holomorphic continuation to extend to all Imλ, Imλ0 > 0, away from any poles.

Finally the right side of (∗) continues meromorphically, to C if n is odd and to the logarithmic
Riemann surface is n is even, so the left side does too.
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The wave equation and resolvent for stronger perturbations
Let

H =
n�

j,k=1

ajkDjDk +
n�

�=1

b�D� + V ,

where all the b�, V are in C∞
c (Rn), and the ajk are C∞, real valued, and equal the identity matrix

outside of a compact set, and
�n

j,k=1 ajkξjξk ≥ |ξ|2/C .

For f ∈ C∞
c ([T0,T1]× Rn), we showed the forward solution of the wave equation

(∂2
t + H)w(t, x) = f (t, x),

is given, for A large enough, by

w(t, x) =
1

2π

� ∞+iA

−∞+iA

e−itλ(H − λ2)−1 f̃ (λ, x)dλ, f̃ (λ, x) =

� T1

T0

e isλf (s, x)ds,

where the resolvent (H − λ2)−1 has the following properties:
� It is a meromorphic family of bounded operators8 on L2 for Imλ > 0.
� It obeys �(H − λ2)−1�L2→L2 ≤ C/|λ| when Imλ ≥ A.
� For any χ ∈ C∞

c (Rn), χ(H − λ2)−1χ continues meromorphically, to C if n is odd and to the
logarithmic Riemann surface is n is even.
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The meromorphic continuation of the resolvent is based on the black box method of Sjöstrand and
Zworski: see Section 4.2 of Dyatlov and Zworski’s book. Vodev’s identity comes from Section 5 of his
2014 Math. Nachr. paper “Semi-classical resolvent estimates and regions free of resonances”. The
presentation here is based on Lemmas 2.1 and 2.2 of “Wave asymptotics for waveguides and
manifolds with infinite cylindrical ends” by Christiansen and Datchev.
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Exercises.

The exercises marked with a * are more central to the course. (They are not the more difficult ones.)

1. Construct a sequence of eigenfunctions of S2,

−ΔS2ϕm = λ2
mϕm, with λm → ∞, �ϕm�L2(S2) = 1,

and such that there is a nonempty open U ⊂ S2 and a constant C such that

�ϕm�L2(U) ≤ e−λm/C , for every m.

Hint: Let ψm(x , y , z) = (x + iy)m, and use spherical coordinates to show that each ψm, restricted
to the unit sphere x2 + y2 + z2 = 1, is an eigenfunction.

2. * Complete the proof of wave decay outlined in the slide titled ‘Polynomial resolvent estimates’.

3. * Use semiclassical inversion to show that for any θ ∈ (0,π), R(λ) exists and maps L2 → H2, for
|λ| large enough when arg λ = θ.
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4. Show that if H is symmetric on H2(Rn), then it is self-adjoint and semi-bounded.

Hint: Use the criterion for self-adjointness which says that if H is symmetric and H−a is surjective
for some real a, then H is self-adjoint. This is part of Theorem 3.29 of Borthwick’s Spectral Theory,
and is similar to Hassannezhad’s Section 1.4. Semi-boundedness follows from the fact that R(λ) exists
when Reλ = 0 and Imλ � 0. You may also enjoy adapting the result of this exercise to the operator
H = −c(x)2Δ by using L2(Rn) with respect to c(x)−2dx as your Hilbert space.

5. * Show that �R(λ)�L2→L2 ≤ C/|λ|2 when Reλ = 0 and Imλ � 0. Use this and the standard
resolvent identity

R(λ)(I + (λ2
0 − λ2)R(λ0)) = R(λ0)

to find a specific open neighborhood of this ray, in terms of C , where R(λ) exists.

6. * Prove the there is a constant C0 such that

Im z ≤ −C0h =⇒ �u�L2 ≤ C

h
�(P − z)u�L2 .

and

Re z ≤ −C0h =⇒ �u�L2 ≤ C

h
�(P − z)u�L2 .
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