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The wave equation and resolvent for stronger perturbations
Let

H =
n�

j,k=1

ajkDjDk +
n�

�=1

b�D� + V ,

where all the b�, V are in C∞
c (Rn), and the ajk are C∞, real valued, and equal the identity matrix

outside of a compact set, and
�n

j,k=1 ajkξjξk ≥ |ξ|2/C .

For f ∈ C∞
c ([T0,T1]× Rn), we showed that the forward solution of the wave equation

(∂2
t + H)w(t, x) = f (t, x),

is given, for A large enough, by

w(t, x) =
1

2π

� ∞+iA

−∞+iA

e−itλ(H − λ2)−1 f̃ (λ, x)dλ, f̃ (λ, x) =

� T1

T0

e isλf (s, x)ds,

where the resolvent (H − λ2)−1 has the following properties:
� It is a meromorphic family of mapping H r (Rn) → H r+2(Rn) for any real r and for Imλ > 0.
� It obeys �(H − λ2)−1�L2→L2 ≤ C/|λ| when Imλ ≥ A.
� For any χ ∈ C∞

c (Rn), χ(H − λ2)−1χ continues meromorphically, to C if n is odd and to the
logarithmic Riemann surface is n is even.
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Polynomial resolvent estimates
Our goal in the remainder of the course is to prove

�χ(H − λ2)−1χ�L2→L2 ≤ |λ|C ,

when − ln |Reλ| ≤ C Imλ and |Reλ| is large enough, for those H for which it holds. (We have
already seen in Part III that �χ(H − λ2

m)
−1χ�L2→L2 ≥ eλm/C is possible for certain H.) This is enough

to prove that, if n is odd, the forward solution w to (∂2
t + H)w = f ∈ C∞

c ([T0,T1]× Rn) obeys

χw(t, x) =
1

2π

� ∞+iA

−∞+iA

e−itλχ(−Δ+ V − λ2)−1χf̃ (λ, x)dλ, f̃ (λ, x) =

� T1

T0

e isλf (s, x)ds,

and, for any M,

χw(t, x) = −
�

{λj : Imλj>−M}
iRλj (t, x) + E (t, x),

with
|χE (t, x)| ≤ Ce−Mt ,

and similar bounds on all derivatives of E . The proof 1 is just as in Part II, but taking advantage of
the arbitrariness of N in the Paley–Wiener estimate |∂α f̃ (λ, x)| ≤ Cα,Ne

−T0 Imλ|λ|−N .
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Complex scaling in one dimension

To understand the behavior of waves as t → ∞, we will use a contour deformation into the lower half
plane. To get good control of the resolvent along the way, we will use complex scaling, which we now
introduce, beginning with the simpler case of dimension n = 1.

This technique consists of holomorphically extending the operator H to an operator HΓ which has
better ellipticity properties, where Γ = {x + iγ(x) : R} ⊂ C, with γ ∈ C∞(R) vanishing near [−R ,R],

with R chosen such that H = − d2

dx2 away from [−R ,R], and with sgn γ��(x) sgn γ(x) ≥ 0.

We will show that if χ ∈ C∞
c ([−R,R]), then for any λ we have

χ(H − λ2)−1χ = χ(HΓ − λ2)−1χ.
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The complex scaled operator in one dimension

More specifically, to define HΓ, start with H and then replace every instance of x with z , a complex

variable ranging over R ∪ {z ∈ C : |Re z | > R}, where R is chosen such that H = − d2

dx2 away from
[−R ,R]. Then restrict the resulting differential operator to the curve Γ = {x + iγ(x) : R}, with
γ ∈ C∞(R) a function which vanishes near [−R ,R] and obeys sgn γ��(x) sgn γ(x) ≥ 0.

This means replacing every instance of d
dx with d

dz

��
Γ
= (1 + iγ�(x))−1 d

dx , giving

H = −a(x)
d2

dx2
− ib(x)

d

dx
+ V (x),

HΓ = − a(x)

1 + iγ�(x)
d

dx

1

1 + iγ�(x)
d

dx
− ib(x)

1 + iγ�(x)
d

dx
+ V (x).

One can check that the definition of d
dz

��
Γ
is independent of choice of parametrization2 but we will only

need the fact that if u is complex differentiable at some z = x + iγ(x) ∈ Γ, then, by the chain rule,

d

dz

���
Γ
u(z) =

1

1 + iγ�(x)
d

dx
u(x + iγ(x)) =

d

dz
u(z).
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Resolvent of the complex scaled operator in one dimension: semiclassical inversion
We have thus defined

HΓ = − a(x)

1 + iγ�(x)
d

dx

1

1 + iγ�(x)
d

dx
− ib(x)

1 + iγ�(x)
d

dx
+ V (x).

Suppose now that γ�(x) = tan θ when |x | ≥ R � for some R � > R and θ ∈ (−π/2,π/2). Then, when
|x | ≥ R �, HΓ equals

Hθ := −(1 + i tan θ)−2 d2

dx2
,

which is a scalar multiple of the free Laplacian. We can now study the resolvent as in Part III. Let

PΓ = h2HΓ, pΓ(x , ξ) = (1 + iγ�(x))−2a(x)|ξ|2,
so that

| arg pΓ| = | arg(1 + iγ�)−2| ≤ 2|θ| < π,

and consequently |pΓ + 1| ≥ (1 + |ξ|2)/C . By semiclassical elliptic inversion,

(PΓ + I )−1 = h−2(HΓ + h−2)−1

is bounded L2 → H2
h and we can define the resolvent3

RΓ(λ) = (HΓ − λ2)−1 : L2 → H2,

when Reλ = 0 and Imλ � 0. 6 / 19
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Resolvent of the complex scaled operator in one dimension: meromorphic continuation I
We have thus defined

HΓ = − a(x)

1 + iγ�(x)
d

dx

1

1 + iγ�(x)
d

dx
− ib(x)

1 + iγ�(x)
d

dx
+ V (x), Hθ = −(1 + i tan θ)−2 d2

dx2
.

The corresponding resolvents

RΓ(λ) = (HΓ − λ2)−1, Rθ(λ) = (Hθ − λ2)−1, mapping L2 → H2,

are defined when Reλ = 0, Imλ � 0, and

Rθ(λ) = (1 + i tan θ)2(−Δ− (1 + i tan θ)2λ2)−1

continues holomorphically to the set where Im(1 + i tan θ)λ > 0, i.e. arg λ ∈ (−θ,π − θ). We can
now use a resolvent identity:

RΓ(λ)(I + K (λ,λ0)) = F (λ,λ0),

where

K (λ,λ0) = (λ2
0 − λ2)

�
χ1RΓ(λ0) + [−Δ,χ1]Rθ(λ)RΓ(λ0)

�
,

F (λ,λ0) = Rθ(λ0) + (λ2 − λ2
0)(1− χ1)Rθ(λ)RΓ(λ0),

as in Part III to show that RΓ(λ) continues meromorphically to the same set.4
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Resolvent of the complex scaled operator in one dimension: meromorphic continuation II
Another way to prove meromorphic continuation of the resolvent of

HΓ = − a(x)

1 + iγ�(x)
d

dx

1

1 + iγ�(x)
d

dx
− ib(x)

1 + iγ�(x)
d

dx
+ V (x).

is to use the ODE method of variation of parameters to construct its integral kernel. Let u+, u− solve

(HΓ − λ2)u± = 0, u−(x) = e−(1+i tan θ)iλx for x ≤ −R �, u+(x) = e(1+i tan θ)iλx for x ≥ R �.

If arg λ ∈ (−θ,π − θ), then u− ∈ L2(R−) and u+ ∈ L2(R+), and the solution u ∈ L2(R) to

(HΓ − λ2)u = f , where f ∈ L2(R),

is given by

u(x) = u−(x)
� ∞

x

I+ + u+(x)

� x

−∞
I−, where I± =

u±(y)(1 + iγ�(y))2f (y)dy
a(y)W (y)

,

where W = u−u�+ − u+u
�
−, unless this Wronskian is zero; indeed first check this when f is compactly

supported and Reλ, Imλ � 0, and extend to all f ∈ L2(R) and λ with arg λ ∈ (−θ,π − θ).

The resolvent exists everywhere except where W = 0, and since W is holomorphic in λ its zeros are
discrete and all have finite order.
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Equivalence of the complex scaled operator in one dimension

Having shown that (HΓ − λ2)−1 is meromorphic in arg λ ∈ (−θ,π − θ), we now prove that

χ(H − λ2)−1χ = χ(HΓ − λ2)−1χ,

for the same range of λ, provided χ ∈ C∞
c [−R ,R]. Fix f ∈ L2, with supp f ⊂ [−R ,R], and fix λ with

Reλ = 0, and Imλ � 0. Suppose u ∈ L2 solves

(H − λ2)u = f .

When ±x > R , the equation becomes −u�� − λ2u = 0, and since u ∈ L2 that means

u(x) = C±,f ,λe
±iλx , ±x ≥ R .

We extend this to a function of a complex variable and restrict to Γ to obtain uΓ given by

uΓ(x) = u(x + iγ(x)), and solving (HΓ − λ2)uΓ = f .

Since χuΓ = χu, it is enough to check that uΓ ∈ L2. That follows from the fact that e±iλ(x+iγ(x)) is a
decaying exponential as ±x → ∞.
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Semiclassical estimate for the complex scaled operator in one dimension I
Thus we have shown that χ(H − λ2)−1χ = χ(HΓ − λ2)−1χ for arg λ ∈ (−θ,π − θ), and also that
(HΓ − λ2)−1 is meromorphic there. We will prove that, if θ > 0 is fixed small enough, then

�χ(H − λ2)−1χ�L2→L2 ≤ |λ|C ,

when − ln |Reλ| ≤ C Imλ and Reλ is large enough, by proving the a priori estimate

�u�L2 ≤ |λ|C�(HΓ − λ2)u�L2 .

We will deduce the latter from the semiclassical estimate

�u�L2 ≤ h−C�(PΓ − z)u�L2 ,

where PΓ = h2HΓ, for |z − 1| ≤ h ln(1/h)/C , applied with h = |Reλ|−1, z = h2λ2. Recall that if
±Reλ � 0, then Im z = 2h2 Reλ Imλ ≈ ±2h Imλ.
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Semiclassical estimate for the complex scaled operator in one dimension II
To prove

�u�L2 ≤ h−C�(PΓ − z)u�L2 , |z − 1| ≤ h ln(1/h)/C , (∗)
we will prove

�u�L2 ≤ Cε−1�eεQ/h(PΓ − 1)e−εQ/hu�L2 , (∗∗)
where ε = h ln(1/h) and Q = Oph(q), with q ∈ C∞

c (R×R) to be determined. (This is an instance of
the PDE principle of carefully choosing the norms/spaces for our estimates.) To prove that (∗∗)
implies (∗), we write

�eεQ/h(PΓ − 1)e−εQ/hu�L2 ≤ �eεQ/h(PΓ − z)e−εQ/hu�L2 + �(z − 1)u�L2 ,

which shows that (∗∗) implies

�u�L2 ≤ Cε−1�eεQ/h(PΓ − z)e−εQ/hu�L2 , |z − 1| ≤ Mh ln(1/h). (∗∗∗)
Next (∗∗∗) implies (∗) because

�eεQ/h� =
���

∞�

k=0

εkQk

k!hk

��� ≤
∞�

k=0

εk�Q�k
k!hk

= eε�Q�/h = e�Q� ln(1/h) = h−�Q�,

where all norms are L2 → L2.
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Semiclassical estimate for the complex scaled operator in one dimension III
It thus remains to prove

�u�L2 ≤ Cε−1�eεQ/h(PΓ − 1)e−εQ/hu�L2 , (∗∗)
where ε = h ln(1/h) and Q = Oph(q). For this we will use the Taylor expansion

eεQ/h(PΓ − 1)e−εQ/h = (PΓ − 1) + ε[Q/h,PΓ] + OL2→L2(ε2);

we will choose q ∈ C∞
c (R×R) so that ε[Q/h,PΓ] is semiclassically elliptic wherever PΓ − 1 isn’t, but

let us first explain the OL2→L2(ε2) remainder. To do so we write5

adB A = [B ,A], eεQ/h(PΓ − 1)e−εQ/h = eε adQ/h(PΓ − 1),

and use the Taylor expansion with integral remainder:

eε adQ/h(PΓ − 1) =(PΓ − z) + ε(adQ/h)PΓ

+
1

2
ε2(adQ/h)

2PΓ + · · ·+ 1

K !
εK (adQ/h)

KPΓ

+
1

K !
εK+1

� 1

0

(1− t)K eεt adQ /h(adQ/h)
K+1PΓdt

For any K , all terms in the second line are OL2→L2(ε2). If K is big enough, the integral remainder
term is O(ε2) because �eεQ/h�L2→L2 ≤ h−�Q�L2→L2 .
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Semiclassical estimate for the complex scaled operator in one dimension IV
Thus we have

eεQ/h(PΓ − 1)e−εQ/h = (PΓ − 1) + ε[Q/h,PΓ] + OL2→L2(ε2),

and so to prove
�u�L2 ≤ Cε−1�eεQ/h(PΓ − 1)e−εQ/hu�L2 , (∗∗)

it is enough to show

�u�L2 ≤ Cε−1�Su�L2 , S := (PΓ − 1) + ε[Q/h,PΓ],

where ε = h ln(1/h), Q = Op(q), q ∈ C∞
c (R× R) to be determined. The principal symbol of S is

s = pΓ − 1 + iε{pΓ, q} =
a(x)ξ2

(1 + iγ�(x))2
− 1 + iε{pΓ, q} = a(x)ξ2(1 + O(θ))− 1 + O(ε).

Hence for θ > 0 small enough and h > 0 small enough, we get

|s| ≥ (1 + ξ2)/C , when ξ2 ≤ min a/2 or ξ2 ≥ 2max a.

Fix ϕ ∈ C∞
c (0,∞) which is 1 near [min a/2, 2max a]. Then, by the composition formula and L2

boundedness (see Hezari Lecture 5),

�Op(1− ϕ(ξ2))u�L2 ≤ C�Op((1− ϕ(ξ2))s−1)Su�L2 + Ch�u�L2 ≤ C�Su�L2 + Ch�u�L2 .
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Semiclassical estimate for the complex scaled operator in one dimension V
Our goal now is to prove, with ε = h ln(1/h), Q = Op(q), q ∈ C∞

c (R× R) to be determined, that

�u�L2 ≤ Cε−1�Su�L2 , S = (PΓ − 1) + ε[Q/h,PΓ], s = pΓ − 1 + iε{pΓ, q}, pΓ =
a(x)ξ2

(1 + iγ�(x))2
,

and thus far we have shown, for ϕ ∈ C∞
c (0,∞) which is 1 near [min a/2, 2max a],

�Op(1− ϕ(ξ2))u�L2 ≤ C�Su�L2 + Ch�u�L2 . (�)

We will choose q ∈ C∞
c (R× R) so as to get

Im s ≤ −ε, when ξ2 ∈ suppϕ. (��)

That will imply, by the sharp Gårding inequality (see Hezari’s Lecture 5)

Im�(S + iε)Op(ϕ(ξ2))u,Op(ϕ(ξ2))u�L2 ≤ Ch�u�2L2 ,

and hence, since �[S ,Op(ϕ(ξ2))]�L2→L2 ≤ Ch,

ε�Op(ϕ(ξ2))u�2L2 ≤ �S Op(ϕ(ξ2))u�L2�Op(ϕ(ξ2))u�L2+Ch�u�2L2 ≤ �Su�L2�Op(ϕ(ξ2))u�L2+Ch�u�2L2 ,

which implies
ε�Op(ϕ(ξ2))u�2L2 ≤ Cε−1�Su�2L2 + Ch�u�2L2 .

Combining with (�) gives the result so it is enough to construct q so that (��) holds.
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Escape function construction

Given ϕ ∈ C∞
c (0,∞), we now wish to construct a q such that

Im s ≤ −ε when ξ2 ∈ suppϕ, where s = pΓ − 1 + iε{pΓ, q}, pΓ =
a(x)ξ2

(1 + iγ�(x))2
. (��)

We have Im s = Im pΓ + ε{Re pΓ, q}. When |x | ≥ R , we have γ�(x) = tan θ and hence

Im s = Im pΓ + O(ε) = −2a(x)ξ2 tan θ(1 + tan θ2)−2 + O(ε) ≤ −1/C .

Since Im pΓ ≤ 0 always, it is enough to construct q so that

−{Re pΓ, q} = {q,Re pΓ} ≥ 1/C , when |x | ≤ R and ξ2 ∈ suppϕ.

For that we take q(x , ξ) = q1(x)q2(ξ) such that q2(ξ) = ξ near suppϕ and write

{q,Re pΓ} = q1(x)∂x Re pΓ − q�1(x)ξ∂ξ Re pΓ = q1(x)a
�(x)ξ2 + O(θ)− 2q�1(x) Re pΓ,

so it is enough to take q�1/q1 a large constant near [−R ,R]. Such a q is called an escape function or
Lyapounov function. Its key property is being monotonic (in this case increasing) along the flow of p.
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Higher dimensions I
Much of the above discussion carries with minor changes to higher dimensions. To define the complex
scaled operator we use polar coordinates, and replace ∂r with ∂r |Γ = (1 + iγ�(r))−1∂r .
Constructing the resolvent (HΓ − λ2)−1 by semiclassical inversion, and using resolvent identities to
meromorphically continue, works just as before. The same approch as before, but with separation of
variables, shows

χ(HΓ − λ2)−1χ = χ(H − λ2)−1χ.

As before, fix f ∈ L2, supp f ⊂ suppχ, and fix λ with Reλ = 0, and Imλ � 0. Suppose u ∈ L2 solves

(H − λ2)u = f .

When |x | is large, the equation becomes −Δu − λ2u = 0, and writing u(r , θ) =
�∞

j=0 uj(r)Yj(θ),

where Yj are spherical harmonics, −ΔSn−1Yj = σ2
j Yj , we get

−u��j − (n − 1)r−1u�j + r−2σ2
j uj − λ2uj = 0.

Since u ∈ L2, by the WKB approximation uj(r) ∼ Cje
iλr r (1−n)/2 (in fact, uj is given by a Hankel

function). Extend this to a function of a complex variable and restrict to Γ to obtain uj,Γ given by

uj,Γ(r) = u(r + iγ(r)), and solving (HΓ − λ2)uΓ = f .

Since χuΓ = χu, it is enough to check that uΓ ∈ L2. That follows from the fact that e iλ(r+iγ(r)) is a
decaying exponential as r → ∞. 16 / 19



Higher dimensions II

After that, the analysis is again the same up until we get to the point of wanting to construct
q ∈ C∞

c (Rn × Rn) such that

{q,Re pΓ} ≥ 1/C , when (x , ξ) ∈ K , where pΓ =
n�

j,k=1

aj,k(x)|ξ|2
(1 + iγ(|x |))2

where K is a given compact subset of {(x , ξ) ∈ Rn × Rn such that ξ �= 0}. The existence of such a q
implies that p is nontrapping, i.e. that all bicharacteristics (aka integral curves) of the vector field Hp

given by Hpf = {p, f } escape to infinity. Conversely, one can show that if p is nontrapping, then
there is such a q.
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Nontrapping escape functions
Let W be a neighborhood of K . For each ρ ∈ K , let γρ be the bicharacteristic through ρ. Fix
aρ < 0 < bρ such that aρ is the max of the negative times for which γρ �∈ W and bρ is the min of the
positive times for which γρ �∈ W . Let Σρ be a hypersurface in Rn × Rn transversal to γρ at ρ. Let
ϕρ ∈ C∞

c (Σρ) be nonnegative, 1 near ρ, and supported in a sufficiently small neighborhood Uρ of ρ,
small enough that the map

Φρ : (aρ, bρ)× Uρ → T ∗M, Φρ(t, y) = exp(tHp)y ,

is a diffeomorphism onto its image. Then Φρ defines product coordinates (t, y) on its image, and it
makes sense to define

qρ(t, y) = χρ(t)ϕρ(y),

where χρ ∈ C∞
c ((aρ, bρ)) has χ

�
ρ < 0 on a sufficiently large subset of (aρ, bρ) that

{p, qρ} = Hpqρ = χ�
ρϕρ

is strictly negative on γρ ∩K . It is then also strictly negative on a neighborhood of γρ ∩K . Using the
fact that such neighborhoods cover K , choose finitely many ρj for j = 1, . . . , J and put

q =
J�

j=1

qρj .
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The discussion of complex scaling is a variant of the one in Sjöstrand and Zworski’s 1991 JAMS
paper “Complex Scaling and the Distribution of Scattering Poles”, but making more use of ODE
methods. See sections 2.7 and 4.5 of Dyatlov and Zworski’s book for more, and see also the note
http://www.math.purdue.edu/~kdatchev/res.ps and pages 36 to 39 of Tang and Zworski’s
notes https://math.berkeley.edu/~zworski/tz1.pdf for additional short versions of the
one-dimensional case. The semiclassical estimates follow Section 4 of Sjöstrand and Zworski’s 2007
Duke paper “Fractal Upper Bounds on the Density of Semiclassical Resonances” and see also Section
6.4 of Dyatlov and Zworski; it is shown there that, keeping track of constants, one can get an optimal
result from this proof.
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Exercises.

The exercises marked with a * are more central to the course. (They are not the more difficult ones.)

1. * Complete the proof of wave decay outlined in the slide titled ‘Polynomial resolvent estimates’.

2. Let C ⊂ C be a C∞ curve. Let c : R → C be a parametrization of C . Prove that

d

dz

���
C
f = (c �(t))−1 d

dt
f (c(t))

is independent of the parametrization by showing that if c̃ is another parametrization, with c(t0) =
c̃(s0) = z0 for some z0 ∈ C and some real t0 and s0, then the quotient c̃ �(s0)−1c �(t0) is real, so that

(c �(t0))
−1 d

dt
f (c(t0)) = (c̃ �(s0))

−1 d

ds
f (c̃(s0)).

3.Take γ ∈ C∞(R) vanishing near [−R ,R] and obeying sgn γ��(x) = sgn γ(x). Let θ1 = arctan inf γ�

and θ1 = arctan sup γ�. For what range of values of ϕ can you use semiclassical elliptic inversion to
construct

RΓ(λ) = (HΓ − λ2)−1 : L2 → H2,
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when arg λ = ϕ and |λ| is large enough? (More general contours are used in the numerical technique
Perfectly Matched Layers: see for example http://math.mit.edu/~stevenj/18.369/pml.pdf)

4. * Use the techniques of Part III to prove that (HΓ−λ2)−1 is meromorphic when arg λ ∈ (−θ,π−θ).

Hint: Mimic the proof that R(λ) is meromorphic in the upper half plane, but with HΓ in place
of H (the operator we wish to understand) and with Hθ in place of −Δ (the operator we already
understand).

5. Verify that if Q = Op(q), q ∈ C∞
c , and A is a differential operator with smooth coefficients, then

eεQAe−εQ = eε adQA,

by checking that both sides solve the operator equation

∂εB = [Q,B] = adQ B ,

with the same initial condition at ε = 0.
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