
Density Functional Theory

Density functional theory is an approach to studying the Schrödinger equation by writing quan-
tities of interest, such as energies, in terms of the particle density, instead of in terms of the wave
function. This can simplify computations considerably, especially when the number of particles is
large.

To be more specific, consider an N -electron system, with Hamiltonian given by

Ĥ = T̂ + V̂ee + V̂ ,

where

T̂ = −1

2

N∑
j=1

∇2
j , V̂ee =

∑
1≤i<j≤N

1

|~ri − ~rj |
, V̂ =

N∑
i=1

v(~ri) =
N∑
i=1

∫
d3r δ(~r − ~ri)v(~r),

and where v is the potential coming from the external forces on the electrons. Here T̂ is the kinetic
energy term, V̂ee is the repulsive Coulomb potential energy between the electrons, and V̂ is the
potential energy due to external forces. We are using atomic units: this means Planck’s constant
~, the electron mass me, and the magnitude of the electron charge e are all equal to 1. The unit
of distance is the Bohr radius a0 = ~2/(me2) , and the unit of energy is the hartree ε0 = e2/a0.
One Bohr radius is about 5.29 · 10−11 meters and one hartree is about 27.2 electron volts. We are
ignoring the sizes of the nuclei, the movements of the nuclei, spin, and relativistic effects.

For example, consider a system of N electrons in a molecule made up of M atoms. Then v is
the attractive Coulomb potential energy arising from the M atomic nuclei, given by

v(~r) =

M∑
k=1

−Zk
|~r − ~Rk|

, (1)

where ~Rk is the position of the kth nucleus and Zk is the number of protons it has.

The density is defined by

n(~r) = 〈ψ|n̂(~r)|ψ〉 =

∫
d3r1

∫
d3r2 · · ·

∫
d3rN ψ

∗(~r1, . . . , ~rN )

N∑
i=1

δ(~r − ~ri)ψ(~r1, . . . , ~rN ).

Note that, for any region U , the quantity
∫
U d

3r n(~r) gives the expected value of the number of
electrons to be found in U .

The basic case is the hydrogen atom, where N = M = Z1 = 1. The ground state energy of the
electron is precisely −0.5 Hartrees, the corresponding wavefunction is ψ(r) = e−r/

√
π, the density

is n(r) = e−2r/π, and the probability density of the electron being at distance r from the nucleus
is 4πr2n(r) and it achieves its maximum at precisely r = 1 Bohr radius.

The point of density functional theory is, instead of writing and computing in terms of ψ, to
write and compute in terms of n. The basic result is the Hohenberg–Kohn Theorem [HoKo], which
says that if n(~r) is a ground state density, then no information is lost by doing this.
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Hohenberg–Kohn Theorem. Consider two N -electron systems, with Hamiltonians Ĥ1 and Ĥ2

defined by:

Ĥk = T̂ + V̂ee + V̂k,

with

V̂k =
N∑
i=1

vk(~ri) =
N∑
i=1

∫
d3r δ(~r − ~ri)vk(~r),

and where each vk is continuous except perhaps at some isolated points where it may go to infinity
(the nuclei).

Theorem. Suppose each Hamiltonian Ĥk has at least one normalizable ground state |ψk〉, and
these ground states lead to identical densities

n(~r) = 〈ψ1|n̂(~r)|ψ1〉 = 〈ψ2|n̂(~r)|ψ2〉,
where

〈ψk|n̂(~r)|ψk〉 =

∫
d3r1

∫
d3r2 · · ·

∫
d3rN ψ

∗
k(~r1, . . . , ~rN )

N∑
i=1

δ(~r − ~ri)ψk(~r1, . . . , ~rN ).

Then v1 − v2 is a constant.

Proof. By the variational principle,

〈ψ1|Ĥ1|ψ1〉 ≤ 〈ψ2|Ĥ1|ψ2〉. (2)

Since

〈ψk|V̂1|ψk〉 =

∫
d3r1

∫
d3r2 · · ·

∫
d3rN ψ

∗
k(~r1, . . . , ~rN )

N∑
i=1

∫
d3r δ(~r − ~ri)v1(~r)ψk(~r1, . . . , ~rN )

=

∫
d3r v1(~r)n(~r),

and the right hand side is independent of k, (2) simplifies to

〈ψ1|T̂ + V̂ee|ψ1〉 ≤ 〈ψ2|T̂ + V̂ee|ψ2〉.

In the same way, starting from 〈ψ2|Ĥ2|ψ2〉 ≤ 〈ψ1|Ĥ2|ψ1〉, we get

〈ψ2|T̂ + V̂ee|ψ2〉 ≤ 〈ψ1|T̂ + V̂ee|ψ1〉.
Hence both sides are equal and it follows that both |ψ1〉 and |ψ2〉 are ground states of both Hamil-
tonians. Then the result follows from the Lemma below. �

Lemma. If there exists a state |ψ〉 which is an eigenstate of both Hamiltonians Ĥ1 and Ĥ2, then
v1 − v2 is a constant.

Proof. We have

Ĥ1|ψ〉 = E1|ψ〉 and Ĥ2|ψ〉 = E2|ψ〉,
for some E1 and E2. Subtracting, we get

(V̂1 − V̂2 − E1 + E2)|ψ〉 = 0,

and hence

W (~r1, . . . , ~rN )ψ(~r1, . . . , ~rN ) = 0, where W (~r1, . . . , ~rN ) =

N∑
i=1

(v1(~ri)− v2(~ri))− E1 + E2. (3)
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From this we will conclude that W (~r1, . . . , ~rN ) = 0 for all points (~r1, . . . , ~rN ). This will complete the

proof because then
∑N

i=1(v1(~ri)−v2(~ri))−E1 +E2 = 0 which implies v1(~ri)−v2(~ri) is independent
of ~ri. The tricky part here is that we must rule out the possibility that ψ = 0 and W 6= 0. We will
use the fact (due to quantum tunneling/unique continuation) that

∫
U |ψ|

2 > 0 for any region U .

To carry this out, multiply (3) by ψ∗(~r1, . . . , ~rN ) and integrate over an arbitrary region U to
obtain ∫

U
W |ψ|2 = 0,

for any region U . We have

0 =

∫
U
W |ψ|2 ≤ max

U
W

∫
U
|ψ|2,

which implies maxU W ≥ 0, and similarly

0 =

∫
U
W |ψ|2 ≥ min

U
W

∫
U
|ψ|2,

which implies minU W ≤ 0. Hence

min
U
W ≤ 0 ≤ max

U
W. (4)

Fix any point (~r1, . . . , ~rN ), and consider regions U containing that point and getting smaller and
smaller. As the diameter of U goes to zero, both minU W and maxU W converge to W (~r1, . . . , ~rN )
because W is continuous. Hence, (4) becomes

W (~r1, . . . , ~rN ) ≤ 0 ≤W (~r1, . . . , ~rN ),

which implies W (~r1, . . . , ~rN ) = 0. Since the point (~r1, . . . , ~rN ) was arbitrary, it follows that W = 0
everywhere. �

Levy’s constrained search. We assume that Ĥ has a normalizable ground state. Then by the
variational principle the energy of this ground state is given by

E = min
ψ
〈ψ|Ĥ|ψ〉,

where the minimum is taken over normalized antisymmetric states ψ with finite kinetic energy.1

Following Levy [Lev], we write this as

E = min
n
E[n], with E[n] = F [n] + V [n],

F [n] = min
ψ→n
〈ψ|T̂ + V̂ee|ψ〉, V [n] = 〈ψ|V̂ |ψ〉 =

∫
d3~r v(~r)n(~r),

where the min
n

is taken over normalized nonnegative densities n with finite kinetic energy and the

min
ψ→n

is taken over normalized states ψ with 〈ψ|n̂(~r)|ψ〉 = n(~r).2

1The antisymmetry condition is that, if 1 ≤ i < k ≤ N , then ψ(~r1, . . . , ~ri−i, ~ri, ~ri+i, . . . ~rk−1, ~rk, ~rk+1, . . . , ~rN ) =
−ψ(~r1, . . . , ~ri−i, ~rk, ~ri+i, . . . ~rk−1, ~ri, ~rk+1, . . . , ~rN ). The normalization condition is 〈ψ|ψ〉 = 1. The finite kinetic

energy condition is that 〈ψ|T̂ |ψ〉 is finite. For v given by attractive Coulomb forces as in equation (1) above, it

follows that 〈ψ|Ĥ|ψ〉 is finite as well; see the Technical Remark between equations (3.6) and (3.7) of [Lie] for more.
2The nonnegativity condition is that n(~r) ≥ 0 for all ~r. The normalization is that

∫
d3r n(~r) = N . The finite

kinetic energy condition is that
∫
d3r(∇

√
n(~r))2 is finite. One can show that if ψ is as in the previous footnote, then

n(~r) = 〈ψ|n̂(~r)|ψ〉 has these properties. Conversely, given n with these properties, one can find ψ as in the previous
footnote (having the form of a Slater determinant) such that n(~r) = 〈ψ|n̂(~r)|ψ〉. See Theorems 1.1 and 1.2 of [Lie]
for more, and see also [Har].
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By the method of Largrange multipliers, solutions to this constrained minimization problem will
be critical points of the Lagrangian E[n]− µN [n], where N [n] =

∫
d3r n(~r), i.e. they are solutions

to the Euler–Lagrange equation

δE[n]

δn
− µδN [n]

δn
= 0, or

δF [n]

δn
+ v(~r)− µ = 0, (5)

where the Lagrange multiplier constant µ is determined by requiring that the solution obey the
constraint N [n] =

∫
d3 n(~r) = N .3

Because F [n] is so complicated, we look for a good approximation which is simpler. The first one
comes from Thomas [Tho] and Fermi’s [Fer] calculations treating the electron cloud as homogeneous
and unbounded.

Thomas–Fermi approximation. In this approximation we replace F [n] by

F TF [n] = T TFs [n] + EH [n], (6)

where

T TFs [n] = As

∫
d3r n5/3(~r), EH [n] =

1

2

∫
d3r

∫
d3r′

n(~r)n(~r ′)

|~r − ~r ′|
, As =

3

10
(3π2)2/3. (7)

Here T TFs [n] approximates the kinetic energy 〈ψ|T̂ |ψ〉, and EH [n], called the Hartree energy, ap-

proximates the interaction energy 〈ψ|V̂ee|ψ〉. The formula for T TFs [n] comes from treating the
electrons as noninteracting particles in a large box [GrSc, Equation (5.56)]. The formula for EH [n]
comes from electrostatics, where by Coulomb’s law EH [n] is the energy of the charge distribution
n(~r) [Gri, Equations (2.43) and (2.29)]. Differentiating (6) gives

δFFT [n]

δn
=

5

3
Asn

2/3(~r) +

∫
d3r′

n(~r ′)

|~r − ~r ′|
.

If we neglect interactions, (i.e. delete the Hartree term) then the Euler–Lagrange equation (5)
becomes

5

3
Asn

2/3(~r) + v(~r) = µ, =⇒ n(~r) =
[ 3

5As
(µ− v(~r))

]3/2
.

Unfortunately this is a complex number if µ−v(~r) < 0, so we use instead n(~r) =
[

3
5As

(µ−v(~r))
]3/2

only when µ > V (~r) and set n(~r) = 0 when µ ≤ v(~r). Notice that µ has units of energy, and if
we interpret it as the highest occupied energy of the electrons then the region where we have set
n(~r) = 0 is precisely the classically forbidden region.

Kohn–Sham method. The Kohn–Sham method [KoSh] computes densities and energies using a
fictitious N -particle non-interacting system, designed so that its ground state density is the same
as the ground state density for the N -particle interacting system Ĥ.

More precisely, let vs(~r) be the potential (called the Kohn–Sham potential) such that if ε1, . . . , εN
are the N lowest energies and ϕ1, . . . , ϕN corresponding normalized states (called Kohn–Sham
orbitals) for the single particle problem(

− 1

2
∇2 + vs(~r)

)
ϕi(~r) = εiϕi(~r),

3Is there a way to check if a given solution to this equation is the right one? Might we end up at a critical point
of E which is not the minimum?
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then

n(~r) =
N∑
i=1

|ϕi(~r)|2,

where this n is the same as the one for the ground state of the problem we are studying. By the
Hohenberg–Kohn theorem, this requirement determines the potential up to an overall constant.
This constant is chosen so that the corresponding Euler–Lagrange equations have the same Lagrange
multiplier constant µ as the one from (5). More precisely, the Kohn–Sham system has energy
functional

Es[n] = Ts[n] +

∫
d3r vs(~r)n(~r),

with kinetic energy given by

Ts[n] =
1

2

N∑
i=1

∫
d3r |~∇ϕi(~r)|2, (8)

and so its Euler–Lagrange equation is

δTs[n]

δn
+ vs(~r)− µ = 0, (9)

where the constant µ is determined by requiring that the solution obey
∫
d3r n(~r) = N . The Kohn–

Sham potential vs is chosen such that the Lagrange multiplier constant µ appearing in (9) is the
same as the original one from (5).

We now proceed to expand the complicated energy functional F [n] in the following way:

F [n] = Ts[n] + EH [n] + Ex[n] + Ec[n].

Typically we have Ts[n]� EH [n]� −Ex[n]� −Ec[n] > 0; see [Bur, Table 7.1] for some example
values (note that EH is denoted U there, and that one writes Exc = Ec + Ex, Tc = T − Ts). Here
the Kohn–Sham kinetic energy Ts[n] and the Hartree energy EH [n] have already been defined in
(8) and (7) respectively. The exchange energy Ex is defined by

Ex[n] = 〈Φ|V̂ee|Φ〉 − EH [n],

and the correlation energy Ec is defined by

Ec[n] = 〈Ψ|T̂ + V̂ee|Ψ〉 − 〈Φ|T̂ + V̂ee|Φ〉,

where Φ is defined by the Slater determinant

Φ(~r1, . . . , ~rN ) =
1√
N !

det[ϕj(~rk)],

and we are taking the determinant of the matrix whose entry in the jth row and kth column is
ϕj(~rk). Thus Φ is the ground state wave function of the N -particle Kohn–Sham system. The
density and Kohn–Sham kinetic energy are given in terms of Φ by

n(~r) = 〈Φ|n̂(~r)|Φ〉, Ts[n] = 〈Φ|T̂ (~r)|Φ〉,

and Φ has the following minimization property:

〈Φ|T̂ |Φ〉 ≤ 〈Φ̃|T̂ |Φ̃〉,

where Φ̃ is any Slater determinant obeying n(~r) = 〈Φ̃|n̂(~r)|Φ̃〉.
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The exchange energy also obeys the formula

Ex[n] = −1

2

∫
d3r

∫
d3r′

N∑
j 6=k=1

ϕ∗j (~r)ϕ
∗
k(~r
′)ϕk(~r)ϕj(~r

′)

|~r − ~r ′|
.

The Kohn–Sham potential is given by4

vs = v + vH + vxc,

where

vH(~r) =
δEH [n]

δn
=

∫
d3r′

n(~r ′)

|~r − ~r ′|
, vxc(~r) =

δExc[n]

δn
.

Kohn–Sham algorithm. In computations, one typically uses the Kohn–Sham method to approx-
imate a ground state density and energy using the following steps:

(1) Choose an explicit approximation for the implicitly defined exchange correlation energy,
E ≈xc[n] ≈ Exc[n].

(2) Choose a starting density n(~r) which is as close as possible to the true ground state density,
and compute the corresponding approximate Kohn–Sham potential

v≈s = v + vH + v≈xc, v≈xc(~r) =
δE ≈xc[n]

δn
.

(3) Find the N -particle ground state Φ of the corresponding Kohn–Sham system(
− 1

2
∇2 + v≈s (~r)

)
ϕi(~r) = εiϕi(~r),

and use it to compute a new density n(~r) = 〈Φ|n̂(~r)|Φ〉 =
∑N

i=1 |ϕi(~r)|2.
(4) Redo step (2) with the previous input density n replaced by the new output density from

step (3).
(5) Iteratite this process to get a sequence of densities n1, n2, n3, . . . which hopefully converges.
(6) To get the ground state energy, plug the limiting density, or a later term in the sequence,

into
E ≈[n] = Ts[n] + EH [n] + E ≈xc[n].

As a basic choice one may take E ≈xc[n] = 0. This is called the Hartree approximation. It typically
leads to bond lengths that are too large by 10 to 20%, and atoms barely binding to form molecules
and solids.

A more accurate approximation is the Local Density Approximation (LDA), described below.

Local Density Approximation. This way of approximating the exchange correlation energy was
introduced in [KoSh]. One takes E ≈xc = ELDAxc , where

ELDAxc [n] =

∫
d3r n(~r)εunifxc (n(~r)),

where εunifxc is the exchange correlation energy per particle of an interacting electron gas of uniform
density n. In other words, we locally approximate the true density by a constant density. By

construction, εunifxc is exact for a uniform density, and it is more accurate when the density is more
slowly varying. To compute it, we consider separately the exchange and correlation contributions,

and write εunifxc = εunifx + εunifc .

4Is it easy to see that no constant needs to be added here? See [KoSh, Equation (2.8)]?
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From Thomas–Fermi theory, the exchange contribution is εunifx (n) = 3
4π (3π2n)1/3.

The correlation contribution is much more complicated. Wigner in the 1930s approximated it as

εunifc (n) ≈ −a
b+rs

, where rs = (4πn3 )−1/3 is the radius of the sphere having volume 1/n, and where
a and b are positive numbers obtained from numerical studies of the n → ∞ and n → 0 limits.
Close approximations are also more complicated. An accurate formula was obtained by Perdew
and Wang in 1992 [PeWa].

Such approximations leads to bond lengths that are too small by a few percent, and binding
energies that are too large by about 10%.

Constraints on functionals. As we look for better approximations than the local density ap-
proximation, we bear in mind certain constraints satisfied by the true functionals.

One constraint is derived from the uniform coordinate scaling. For any γ > 0 and any state ψ,
we put

ψγ(r) = γ3N/2ψ(γr),

where r = (~r1, . . . , ~rN ). This scaling preserves normalization: if 〈ψ|ψ〉 =
∫
d3Nr|ψ(r)|2 = 1, then∫

d3Nr|ψγ(r)|2 = γ3N
∫
d3Nr|ψ(γr)|2 =

∫
d3Nr|ψ(r)|2 = 1.

Similar calculations show that

〈ψγ |T̂ |ψγ〉 = γ2〈ψ|T̂ |ψ〉, 〈ψγ |V̂ee|ψγ〉 = γ〈ψ|V̂ee|ψ〉,

and, using nγ(~r) = γ3n(γ~r) for the density corresponding to ψγ ,

EH [nγ ] = γEH [n]

One can also show that Ex obeys the same scaling. Note that for the local density approximation
we have the scaling

εunifx (γ3n(~r)) = γεunifx (n(~r)).

which implies

ELDAx [nγ ] = γ3
∫
d3r n(γ~r)εunifx (γ3n(γ~r)) =

∫
d3r n(~r)εunifx (γ3n(~r)) = γELDAx [n].
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