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How unique is QR?

Full rank, m =n

In class we looked at the special case of full rank, n x n matrices, and showed
that the QR decomposition is unique up to a factor of a diagonal matrix with
entries +1. Here we’ll see that the other full rank cases follow the m = n case
somewhat closely. Any full rank QR decomposition involves a square, upper-
triangular partition R within the larger (possibly rectangular) m x n matrix.
The gist of these uniqueness theorems is that R is unique, up to multiplication
by a diagonal matrix of £1s; the extent to which the orthogonal matrix is unique
depends on its dimensions.

Theorem (m =n) If A= Q,R; = Q,R; are two QR decompositions of full
rank, square A, then

Q2 = QlS
Ry = SR,

for some square diagonal S with entries +1. If we require the diagonal entries of
R to be positive, then the decomposition is unique.

Theorem (m<n) If A=Q, [Rl Nl] =Q, [Rg NQ] are two QR decom-
positions of a full rank, m x n matrix A with m < n, then

Q2:le7 RQZSRl, and NQZSNl

for square diagonal S with entries +1. If we require the diagonal entries of R to
be positive, then the decomposition is unique.

Theorem (m >n) If A= [Q, U] {Rol} = [Q, U] {132} are two QR

decompositions of a full rank, m x n matrix A with m > n, then
Q,=Q,S, Ry, =SR,, and U,=U\T

for square diagonal S with entries £1, and square orthogonal T'. If we require
the diagonal entries of R to be positive, then @ and R are unique.

Proofs

Proof: (m<n) LetQ,[R1 Ni]=Q,[R: N3] with Q; being m xm and
orthogonal, R; being m x m and upper triangular, and IN; being an arbitrary
m X (n —m) matrix. Then multiplying through yields Q;R; = Q5 Rs, two QR
decompositions of a full rank, m x m matrix. Using the theorem above, we get
that Q5 = QS and Ry = SR, for a diagonal matrix S with entries +1. Looking
at the right-most partition of the original product yields QN1 = Q,N2. But
we’ve shown Q4 = @Q4.S, so now we have QN1 = Q;SN,. Left-multiplying by
Q{ and then by S then proves Ny = SN, completing the theorem.



Proof: (m > n) Let A be full rank and m x n with m > n. Suppose it has
decompositions o o
A=Q R =Q,R;
for m x m orthogonal matrices in m X n and upper-triangular matrices R;. (We
know we can do this because the QR decomposition always exists).
Since m > n, we can write Q; = [Q; U;] and R, = [Igl} where Q; is mxn

and U; is m x (m —n). Then
.- R,
A=Q,R;=[Q; U { 0 } =Q;R;

where R; is square, upper-triangular, invertible (because A is full rank), and the
columns of Q; are orthonormal so Q; satisfies Q7 Q, = I.
Then we have

QR = Q,R;, (1)
and left-multiplying by Qg and right-multiplying by Rfl yields
Q;Q = RoRy . (2)

Note that the right-hand side of Eqn (2) is upper-triangular (since R; is). On the
other hand, left-multiplying Eqn (1) by Q{ and right-multiplying by R5 ! gives
(,',,)FfQ2 =R R, ! and taking the transpose yields a lower-triangular expression
for Qng. Therefore Q?Q2 = Rlel is both lower- and upper-triangular, and
so it is diagonal. Call it D. Then right-multiplying Eqn (1) by Ry " yields

QzRZREI = Qz = QlRlel = QlD

and so Q4 = QD. Multiplying this by its transpose and using orthogonality of
Q; we get I = Q;Q, = (Q,D)"(Q,D) = D'Q{Q,D = D"D = D?. This
proves D? =T, s0o D =S, a diagonal matrix with entries +1. So Q, = @, S.
Left multiplying Eqn (1) by Q% = SQT then yields

SQ{Q,R, = SR, = Q;Q,R, = R,,

proving that R, = SR;.

Handling U,; Finally, we consider U;. To make Qi = [Qi U l} orthonormal,
U, can be any set of columns that are orthonormal to Q,. Since there is such a
vast choice for U;, we then want to know if there is a relationship between U,
and Us,.

Since Q4 = Q, S, those two sets of columns (i.e. @; and Q) span the same
subspace of R™. Because the matrices Ql are full rank, their range must be all
of R™, and so we must have R™ = col(Q,) @ col(U;). But col(Q;) = col(Q,),
so we must have that col(U1) = col(Us). This means there exists an invertible
matrix T such that Uy = U1T because the columns of U; are bases for the same
subspace of R™.

Using the orthogonality of U;, the fact that U; are m x (m — n) (hence
tall and narrow), and the fact that Us = UT, we have that I = U2TU2 =
(UT)"(U\T) = T'"UTU, T = T'IT = T*T, proving that T is in fact or-
thogonal.



