
Personalized PageRank Solution Paths

Kyle Kloster
Purdue University
West Lafayette, IN

kkloste@purdue.edu

David F. Gleich
Purdue University
West Lafayette, IN

dgleich@purdue.edu

ABSTRACT
Personalized PageRank vectors used for many community
detection and graph diffusion problems have a subtle depen-
dence on a parameter epsilon that controls their accuracy.
This parameter governs the sparsity of the solution and can
be interpreted as a regularization parameter. We study al-
gorithms to estimate the solution path as a function of the
sparsity and propose two methods for this task. The first
computes a full solution path and we prove it remains local-
ized in the graph for fast runtimes. Using this method, we
propose a PageRank solution path plot to diagnose new as-
pects of the behavior of personalized PageRank. The second
method is a faster approximation to the solution path on a
grid of logarithmically-spaced values that uses an interesting
application of bucket sort to make the process efficient. We
demonstrate that both of these algorithms are fast and local
on large networks.

1. INTRODUCTION
PageRank has been used for an incredible number of appli-

cations within data mining [27] and machine learning [35], as
well as the broader science community in biology [28], chem-
istry [25], and neuroscience [36]. (And for even more, see our
recent survey [10].) Among all the uses of PageRank, the
personalized variation is frequently used to localize the Page-
Rank vector within a subset of the network. For instance,
Voevodski et al. [31] use personalized PageRank (PPR) scores
to create an affinity measure between proteins. Also, Ander-
sen, Chung, and Lang [2] determined a relationship between
PPR vectors and low-conductance sets that allowed them
to create a type of graph partitioning method that does not
need to see the entire graph. Their push method has been
used for a number of important insights into communities in
large social and information networks [21].

The push method has surprisingly complex behavior for a
simple algorithm. We review it formally in Section 4.1, but
we wish to start with an informal treatment. Push depends
on a number of parameters: (i) a graph, (ii) a value of α for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’15, XXX XXX XXX
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623706.

the teleportation parameter of PageRank, (iii) a set of seed
nodes, and (iv) a solution tolerance of ε. The method moves
PageRank mass from the seed nodes to the remainder of the
graph with spreading operations that affect only the vertices
neighboring previously explored vertices. It stops when the
unprocessed mass at each node is less than ε scaled by the
degree of that node. Consequently, given a graph, α, and
seeds, we can think of the push method as producing a PPR
vector that depends on ε: xε.

We illustrate three PageRank vectors as we vary ε for New-
man’s network science collaboration graph [26] in Figure 1.
There, we see that the solution vectors for PageRank1 that
result from push have only a few non-zeros for large values of
ε. This is interesting because an accurate PageRank vector
is mathematically non-zero everywhere in the graph. Push,
with large values of ε, then produces sparse approximations
to the PageRank vector. In fact, the work in a push method
can be bounded independently of the graph size, which means
that for fixed ε and α it has the same work bound for a graph
with 100, 000 vertices and 100, 000, 000 vertices.

These sparse vectors, along with the speed at which they
can be computed, have made the push method a frequently-
used graph mining primitive. The method is typically used
to identify sets of low-conductance in a graph as part of a
community or cluster analysis [13, 21, 32, 12, 9]. In these
cases, the size of the community or cluster returned depends
on computing a vector xε and then performing a sweep-cut
procedure to convert that vector into a low conductance set.
Because the largest set possible is given by the non-zero
elements of the vector, implementations may use up to 100
values of ε to identify communities at different size-scales [21]
from given seeds.

In a complementary way, we think of ε as a type of regu-
larization parameter that controls the sparsity of the approx-
imate solution. With a few additional details, this analogy
is made precise [11]. We mention this connection because
regularization paths and solution paths are commonly used
in statistics to understand the importance and behavior of
different predictors as they leave and enter optimal models.
For instance, given a Lasso regularization of the least squares
problem Ma ≈ b,

minimizea ‖Ma− b‖22 + λ‖a‖1

1There is a subtle inaccuracy in this statement. As we shall
see shortly, we actually are describing degree normalized
PageRank values. This difference does not affect the non-
zero components or the intuition behind the discussion.

(a) ε = 10−2 (b) ε = 10−3 (c) ε = 10−4

Figure 1: The color of each node reflects its value in the degree-normalized PageRank vector seeded on the
circled node. The hidden nodes are mathematically zero. As the value of ε decreases, more nodes become
non-zero.

the path a(λ) provides insight into the behavior of important
variables in the model [30]. For example, when λ = 0, then
the regularizer disappears, and the least squares solution
typically uses all of the predictors. When λ is large, then
only a sparse subset is used. For the Lasso regularizer, these
solution paths can be computed in just about the same
amount of work as a traditional least squares solution [8].

In this paper, we propose a set of new algorithms based
on the push procedure that allow us to evaluate the PPR
solution path as a function of ε for massive graphs. Whereas
existing algorithms only work for a small number of values of
ε, our algorithms show how the solution varies for thousands
of values. In addition, we are able to compute the set of
best conductance based on the sweep-cut procedure for all of
these values. We use our solution path methods to explore
the properties of graphs in the next section. In our technical
description, we show that our method remain localized in
the graph. It has a runtime that is quadratic with respect
to the push procedure—and in real networks with millions
of nodes it runs in less than a second.

Summary of contributions
· We present a method for studying the solution paths of

personalized PageRank diffusion vectors, and use it to
investigate both small and large networks (Section 2).
· We detail a specific type of PageRank solution path plot

that reveals important information about the behavior of
the solutions as ε varies, as well as the small conductance
sets identified by the algorithm.
· We prove that our personalized PageRank path computa-

tion is independent of the size of the graph (Theorem 1).
· For applications such as network community profiles, we

develop an efficient approximation to the solution path at
a prescribed, logarithmically-spaced grid of ε values. (This
could be considered an optimized version of what was done
before.) This method can compute solutions for hundreds
of values of ε in time that is roughly twice that of optimized
codes for the independent runs of the push method.
· We also evaluate our methods on a set of large graphs

and show that they find sets of slightly better conductance
than prior methods. This has important implications for
community detection methods that use this as a subroutine.

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

1/ε

D
e

g
re

e
 n

o
rm

a
liz

e
d

 P
a

g
e

R
a

n
k

φ
 =

 0
.0

0
5

φ
 =

 0
.0

1
0

φ
 =

 0
.0

6
0

φ
 =

 0
.1

1
1

φ
 =

 0
.2

6
8

Figure 2: A degree-normalized PPR solution path
plot for the network science dataset using the same
seed node as Figure 1. Each curve is the path of a
single entry of the solution xε. The solution paths
are colored based on the PageRank values at ε =
10-4. This reflects around 21,000 values of ε. The
dark black line shows the threshold where we find
the set of best conductance from a sweep cut.

We plan to make our experimental codes available in the
spirit of reproducible research.

2. PERSONALIZED PAGERANK PATHS
We now show the types of insights that our solution path

methodology can provide. We should illustrate that these
are primarily designed for human interpretation. Our vision
is that they would be used by an analyst that was studying a
network and needed to better understand the “region” around
a target node. These solution paths would then be combined
with something like a graph layout framework to highlight
these patterns in the graph.

PageRank solution path plots. We introduce degree
normalized PageRank solution path plots to reveal informative
structure inside the solution paths. An example we’ll discuss
shortly is Figure 2. For each graph vertex represented in the
degree normalized PageRank vector xε, we show its solution
trajectory as we vary ε through all values of ε output from
our solution path procedure. The color of each line is given
by the solution value at a particular value of ε (such as 10−4

in that plot.) We display these on a log-log scale where the
horizontal axis is 1/ε. This means that sparse vectors are at
the left and we introduce nodes as we move from left to right.
Due to details of the push method, the minimum PageRank
value for a solution with tolerance ε is ε; hence we show
the black diagonal line for these points. As nodes enter the
solution, they move or jump off of this line. The vertical blue
lines in the bottom left of the plot show the values of ε where
we detect a new set of best conductance. Representative
conductance values are shown when there is room in the plot.
The dark black line in the upper triangle shows the threshold
that determines the set of best conductance at a given value
of ε. This allows us to follow the minimum conductance set
trajectory as we vary ε.

Network science collaborators. In Figure 2, we show
the PageRank solution path for around 21, 000 values of ε
computed via our algorithm for the network science collabo-
ration network. This computation runs in less than a second.
Here, we see that large gaps in the degree normalized Page-
Rank vector indicate cutoffs for sets of high conductance.
This behavior is known to occur when sets of really good
conductance emerge [1]. We can now see how they evolve
and how the procedure quickly jumps between them.

Facebook. On a crawl of a Facebook network from 2009
where edges between nodes correspond to observed interac-
tions [33] (see Table 1, fb-one-cc, for the statistics), we are
able to find a large, low conductance set using our solution
path method. (Again, this takes about a second of computa-
tion.) This diffusion shows no sharp drops in the PageRank
values like in the network science data. Yet we still find good
conductance cuts. Note the few stray “orange” nodes in the
sea of yellow. These nodes quickly grow in PageRank and
break into the set of smallest conductance. Finding these
nodes is likely to be important to understand the boundaries
of communities in social networks; these trajectories could
also indicate anomalous nodes.

YouTube communities. Finally, we use our tools to
study a community detection problem as posed by Kloumann
and Kleinberg [18]. They found that using PageRank values,
instead of degree normalized PageRank values, produced bet-
ter results in a seeded community detection problem. In Fig-
ure 4 we show the solution paths for the YouTube graph [24],
seeded with 10% of the nodes from a single ground-truth
community, for both the degree normalized PageRank vector
we will usually use, as well as the regular PageRank vector.
(For the PageRank vector, we simply scale our solution.)
We show this both for the seeds of the community as well
as the remaining nodes. These plots illustrate that under-
standing how the seeds behave is critical to appreciating the
diffusion. In the unnormalized version, the seeds lift the val-
ues of a large number of nodes, whereas these are scattered
throughout the vector in the degree normalized version.

Additional opportunites. Fast access to the solution
path trajectories provides a number of additional opportun-
ties that we have not yet explored. For instance, nodes in

Figure 3: The degree-normalized PageRank solution
path for a crawl of observed Facebook network activ-
ity for one year shows large, good cuts do not need
to have drops in the PageRank vectors. Nodes en-
ter the solution and then quickly break into the best
conductance set, showing that the frontier of the dif-
fusion should be an interesting set in this graph.

an egonet could be clustered by properties of their solution
paths instead of their connectivity patterns. These trajecto-
ries could also be new features to role discovery frameworks
such as RolX [15].

3. TECHNICAL PRELIMINARIES
Before presenting our method for computing these solution

paths, we first fix our notation. We denote a graph by
G = (V,E), where V is the set of nodes and E the set of
edges. All graphs we consider are simple and undirected. Let
G have n = |V | nodes and fix a labeling of the graph nodes
using the numbers 1, 2, . . . , n. We refer to a node by its
label. For each node j we denote its degree by dj .

Random walk transition matrix. We analyze Page-
Rank from the perspective of matrix computations. We
define the adjacency matrix of the graph G, which we denote
by A, to be the n×n matrix having Ai,j = 1 if nodes i and j
are connected by an edge, and 0 otherwise. Since G is simple
and undirected, A is symmetric with 0s on the diagonal.
Then the matrix D denotes the diagonal matrix with entry
(i, i) equal to the degree of node i, di. Assuming G has no
isolated nodes, D is invertible, and we can define the random
walk transition matrix P := AD−1. Lastly, we denote by ej
the standard basis vector of appropriate dimensions with a 1
in entry j, and by e the vector of all 1s.

In general, we use subscripts on matrices and vectors to de-
note entries, e.g. Ai,j is entry (i, j) of matrix A; the notation
for standard basis vectors, ej , is an exception. Superscripts
refer to vectors in a sequence of vectors, e.g. x(k) is the kth
vector in a sequence.

Conductance. For any set of nodes, S ⊆ V , we define
the volume of S to be the sum of the degrees of the nodes in
S, denoted vol(S) =

∑
j∈S dj . Next, define the boundary of

(a) Seed trajectories (b) Community trajectories (c) Seed trajectories (d) Community trajectories

Figure 4: Seed and ground-truth community trajectories in degree normalized PageRank vectors and un-
normalized PageRank vectors show that both the seed nodes and community nodes remain repressed in the
sorted degree normalized vector but are raised in the unnormalized trajectories. This illustrates a finding
from Kloumann and Kleinberg [18].

S ⊆ V to be the set of edges that have one endpoint inside
S and the other endpoint outside S, denoted ∂(S). Finally,
the conductance of S, denoted φ(S), is defined by

φ(S) :=
|∂(S)|

min{vol(S), vol(V − S)} .

Intuitively, the conductance of S is the probability of leaving
S if you take a random walk of length one starting at a
node chosen uniformly at random inside S. Conductance
can be thought of as measuring the extent to which a set is
more connected to itself than the rest of the graph. Because
of this, it is widely used as a metric in searching for com-
munities focused around a small set of starting nodes. We
call such starting nodes seed sets and the resulting commu-
nities, local communities. A common means of identifying
good-conductance sets is via a graph diffusion. We focus on
the most commonly used diffusion, the PageRank diffusion,
which we now review.

PageRank Objective. For a stochastic matrix P, a
stochastic vector v, and a parameter α ∈ (0, 1) we define
the PageRank graph diffusion as the solution x to the linear
system

(I− αP)x = (1− α)v. (1)

When v = (1/|S|)eS — i.e. the indicator vector for a seed set
S, normalized to be stochastic — then we say the PageRank
vector has been personalized to the set S.

Given PageRank diffusion scores xj , the values xj/dj de-
termine node rankings, and a sweep-cut procedure (described
below) determines a set of good conductance. We would like
to bound the error in approximating the values xj/dj , then.
In particular, we want to guarantee that our approximate
solution x̂ gives scores x̂j that satisfy 0 ≤ xj − x̂j < εdj . In
vector notation, we want to ensure that

x ≥ x̂, and ‖D−1x−D−1x̂‖∞ < ε. (2)

In Section 4.2 we provide a convergence criterion for our
algorithms that guarantees this condition holds.

Sweep-cut procedure. Once a PPR diffusion x is com-
puted, its best-conductance set is produced with a sweep
cut procedure, described as follows. Rank the nodes in de-
scending order by their scaled diffusion scores xj/dj , with
large scores ranking the highest. We denote the set of nodes
ranked 1 through m by S(m). Once the nodes are ranked,
we iteratively compute the conductance of the sets S(m) for

m = 2, 3, . . . , nonzeros(x̂) . The set S(t) with the best
conductance is then output as the set of best conductance
for that diffusion. We use these preliminary procedures in
our algorithms for approximating PPR diffusions.

4. ALGORITHMS
Here we present two novel algorithms for analyzing a PPR

diffusion across a variety of accuracy parameter settings
by computing the diffusion only a single time. Our first
algorithm computes the best-conductance set from PPR dif-
fusions for every accuracy satisfied in an interval [ε, εmax],
where ε and εmax are inputs. We prove the total runtime is
bounded by O(ε−2(1 − α)−2), though we believe improve-
ments can be made. In addition to identifying the best-
conductance set taken from the different approximations, the
algorithm enables us to study the solution paths of PageRank,
i.e. how the PPR diffusion scores change as the diffusion’s
accuracy varies. Hence, we call this method ppr-path.

We describe a second algorithm optimized for speed, as
the exhaustive nature of our first method generates too
much intermediate data for stricter values of ε. Instead of
computing the full solution paths, the second method searches
for good-conductance sets over an approximate solution for
each accuracy parameter taken from a grid of parameter
values. The spacing of the accuracy parameters values on
the grid is an additional input parameter. For this reason,
we call the algorithm ppr-grid. For a log-spaced grid of
values ε0, ε1, . . . , εN with strictest accuracy ε, we locate
the best-conductance set taken from a sweep over each εk-
approximation. The work required to compute the diffusions
is bounded by O(ε−1(1−α)−1); we show this yields a constant
factor speedup over the practice of computing each diffusion
separately. However, our method requires the same amount of
work for performing the sweeps over each different diffusion.

Both of our methods take their fundamental operation
from a sparse iterative solver similar to the Gauss-Seidel
coordinate relaxation scheme. This operation is the basis
for a number of graph algorithms, including the constant
time method presented in [2]. We review the operation
here in the language of matrix computations, and provide a
convergence criterion that we prove guarantees the desired
accuracy condition (2).

4.1 Push operation

The iterative solver we present here is applicable outside
our narrow setting, and so we present the scheme in full
generality before recasting it for PageRank.

Let Mx = b be an arbitrary, square linear system. Let
x(k) ≈ x be an iterative solution after k steps. Then the
corresponding residual is r(k) = b−Mx(k). Let j be a row
index where we want to relax the equation, and let r be the

residual value there, r = r
(k)
j . We update the solution and

residual as follows: add r to the corresponding entry of the
solution vector, x(k+1) = x(k) + rej . Then, compute r(k+1)

from the definition of the residual, r(k+1) = b −Mx(k+1).
Expanding x(k+1) in this yields, after some light algebra,

x(k+1) = x(k) + rej

r(k+1) = r(k) − rMej .

Note that the update requires updating just one entry of x(k)

and accessing only a single column of the matrix M.
A modified linear system. Rather than apply the

scheme to the PageRank linear system, it is easier for our
purposes to use a modified system. We multiply Equation
(1) by D−1 to obtain, after some manipulation,

(I− αPT)D−1x = (1− α)D−1v.

Note this transformation relies on A being symmetric so that
PT = (AD−1)T = D−1A = D−1PD. To avoid writing D−1

repeatedly, we make the change of variables y = (1/(1 −
α))D−1x and b = D−1v. The modified system is then

(I− αPT)y = b, r(k) = b− (I− αPT)y(k), (3)

and we set x(k) = (1 − α)Dy(k). Substituting this system
into the iterative solver above and simplifying yields the
iterative update

y(k+1) = y(k) + rej

r(k+1) = r(k) − rej + rαPT ej . (4)

This residual update corresponds to deleting a selected entry
j, and then for each neighbor i of node j, adding (rα)/di to
entry i of the residual. An important consequence of this,
which we use below, is that the residual is always nonnegative.

4.2 Convergence criterion
Now we give a criterion for convergence of the iteration

(4) and show that the resulting vector ŷ yields a PPR ap-
proximation x̂ satisfying the desired accuracy (2).

The error in the system (3) can be expressed in terms of
the residual vector. Left-multiplying the residual in (3) by
(I− αPT)−1 and substituting y = (I− αPT)−1b, we get

y− y(k) =

(
∞∑
m=0

αm
(
PT
)m)

r(k),

where the right-hand side replaces (I − αPT)−1 with its
Neumann series. Note here that, because the right-hand side
consists of all nonnegative entries, we must have y−y(k) ≥ 0.
Since (1− α)y(k) = D−1x(k), this implies x ≥ x(k), proving
one component of the accuracy criterion (2) is satisfied.

Using the triangle inequality and sub-multiplicativity of
the infinity norm allows us to bound ‖y− y(k)‖∞ with

∞∑
m=0

αm
∥∥∥(PT

)m
r(k)

∥∥∥
∞
≤

(
∞∑
m=0

αm
∥∥∥PT

∥∥∥m
∞

)∥∥∥r(k)∥∥∥
∞
.

Finally, since P is column stochastic, PT is row-stochastic,
and so ‖PT ‖∞ = 1. Substituting this and noting that∑∞
m=0 α

m = 1/(1− α) allows us to bound

1
1−α

∥∥∥D−1x−D−1x(k)
∥∥∥
∞

=
∥∥∥y− y(k)

∥∥∥
∞
≤ 1

1−α

∥∥∥r(k)∥∥∥
∞
.

Then iterating until reaching the convergence criterion∥∥∥r(k)∥∥∥
∞
< ε (5)

will guarantee that the accuracy condition (2) is obtained.
This corresponds to computing ŷ satisfying ‖y− ŷ‖∞ < ε

1−α .
A choice of accuracy ε gives rise to an infinite number

of approximations xε satisfying our accuracy criteria (2).
Moreover, operating on residual entries in different orders
can result in different vectors xε for the same ε parameter
setting. To introduce some regularity to this, at each step of
our method ppr-path, we operate on the largest entry of the
residual. Even this is not totally deterministic, as multiple
residual entries can have the exact same value at the same
step, which then requires deciding on one entry.

We can achieve uniqueness of each approximation xε using
a particular form of 1-norm regularization [11]. However, this
requires a more intricate implementation, and it is not clear
that the uniqueness attained would provide any meaningful
change. We believe the informal “uniqueness” achieved by
using the maximum residual entry provides nearly identical,
if not exactly identical, results. Next we lay out a systematic
way for computing a PPR diffusion for each possible accuracy
ε using this iterative update.

4.3 PageRank solution paths
Recall our goal for computing the solution path for all ε

values. Let P be a stochastic matrix, choose α satisfying
0 < α < 1, let v be a stochastic vector, and set b = D−1v.
Fix input parameters ε and εmax. Then for each value εcur ∈
[ε, εmax], we want an approximation of the solution to (I−
αPT)y = b that satisfies ‖y− ŷ‖∞ < εcur

1−α .

Given initial solution y(0) = 0 and residual r(0) = b,
proceed as follows. Maintain a priority queue, Q(r), of all
entries of the residual that do not satisfy the convergence
criterion rj < ε. We store the entries of Q(r) using a max-
heap so that we can quickly determine ‖r‖∞ at every step.

Each time the value ‖r‖∞ reaches a new minimum, we con-
sider the resulting solution vector to satisfy a new “current”
accuracy, which we denote εcur. For each such εcur achieved,
we want to perform a sweep over the solution vector. Because
the sweep operation requires a sorted solution vector, we keep
y in a sorted array, L(y). By re-sorting the solution vector
each time a single entry yj is updated, we avoid having to
do a full sweep for each “new” εcur-approximation. The local
sorting operation is a bubblesort on a single entry; the local
sweep update we describe below.

With the residual and solution vector organized in this
way, we can quickly perform each step of the above iterative
update. Then, iterating until ‖r‖∞ < ε guarantees conver-
gence to the desired accuracy. Next we present the iteration
in full detail.

PPR path algorithm. The ppr-path algorithm per-
forms the following iteration until the maximum entry in
Q(r) is below the smallest parameter desired, ε.

1. Pop the max of Q(r), say entry j with value r, then
set rj = 0 and reheap Q(r).

2. Add r to yj .

(a) Bubblesort entry yj in L(y).
(b) If L(y) changes, perform a local sweep update.

3. Add rαPT ej to r.
4. For each entry i of r that was updated, if it does not

satisfy ri < ε, then insert (or update) that entry in
Q(r) and re-heap.

5. If ‖r‖∞ < εcur, record the sweep information, then set
εcur = ‖r‖∞.

When the max-heap Q(r) is empty, this signals that all
entries of r satisfy the convergence criterion rj < ε, and
so our diffusion score approximations satisfy the accuracy
requirement (2).

Sweep update. The standard sweep operation over a
solution vector involves sorting the entire solution vector and
iteratively computing the conductance of each consecutive
sweep set. Here, we re-sort the solution vector after each
update by making only the local changes necessary to move
entry yj to the correct ranking in L(y). This is accomplished
by bubblesorting the updated entry yj up the rankings in

L(y). Note that if y(k) has Tk nonzero entries, then this
step can take at most Tk operations. We believe this loose
upperbound can be improved. We could determine the new
rank of node yj in work log Tk via a binary insert. However,
since we must update the rank and sweep information of
each node that node yj surpasses, the asymptotic complexity
would not change.

Once the node ranks have been corrected, the conductance
score update proceeds as follows. Denote by S(k−1)(m) the
set of nodes that have rankings 1, 2, · · · ,m during step k− 1.
Assuming we have the cut-set (cut and volume) information
for each of these sets, then we can update that information
for the sets S(k)(m) as follows.

Suppose the node that changed rankings was promoted
from rank j to rank j −∆k. Observe that the sets S(k)(m)
and their cut-set information remain the same for any set
S(k)(m) lying inside the rankings [1, · · · , j−∆k−1], because
the change in rankings happened entirely in the interval
[j −∆k, · · · , j]. This occurs for m < j −∆k. Similarly, any

set S(k)(m) with m > j would already contain all of the
nodes whose rank changed – altering the ordering within the
set does not alter the conductance of that set, and so this
cut-set information also need not be changed. Hence, we need
to update the cut-set information for only the intermediate
sets.

Now we update the cut-set information for those intermedi-
ate sets. We refer to the node that changed rank as node L(j).
Its old rank was j, and its new rank is j−∆k. Note that the
cut-set information for the set S(k)(j − t) (for t = 0, · · · ,∆k)

is the exact same as that of set S(k−1)(j− t− 1)∪{L(j)}. In

words, we introduce the node L(j) to the set S(k−1)(j− t−1)
from the previous iteration, and then compute the cut-set
information for the new iteration’s set, S(k)(j− t), by looking
at just the neighborhood of node L(j) a single time. This
provides a great savings over simply reperforming the sweep
procedure over the entire solution vector up to the index
where the rankings changed.

If the node being operated on, L(j), has degree d, then
this process requires work O(d+ ∆k). As discussed above,
we can upperbound ∆k with the total number of iterations
the algorithm performs Tk.

Theorem 1. Given a random walk transition matrix P =
AD−1, stochastic vector v, and input parameters α ∈ (0, 1)

and εmax > ε > 0, our ppr-path algorithm outputs the
best-conductance set found from sweeps over εcur-accurate
degree-normalized solution vectors x̂ to (I−αP)x = (1−α)v,
for all values εcur ∈ [ε, εmax]. The total work required is

bounded by O
(

1
ε2(1−α)2

)
.

Proof. We carry out the proof in two stages. First,
we show that the basic iterative update converges in work
O(ε−1(1− α)−1). Then, we show that the additional work
of sorting the solution vector and sweeping is bounded by
O(ε−2(1− α)−2).

Push work. We count the work on just the residual r(k)

and solution vector y(k). The work required to maintain the
heap Q and sorted array L is accounted for below.

Each step, the push operation acts on a single entry in
the residual that satisfies rj ≥ ε. The step consists of a
constant number of operations to update the residual and
solution vectors (namely, updating a single entry in each),

then adding the constant (rα)/dj to r
(k)
i for each neighbor i

of node j. Since j has dj such neighbors, the total work in
one step is bounded by O (dj).

If T steps of the push operation are performed, then
the amount of work required to obtain an accuracy of ε
is bounded by

∑T
t=0 dj , where j = j(t) is the index of the

residual operated on in step t, r
(t)
j .

Next we bound this expression for the work done in these
“push” steps. Since all entries of the solution and residual
vectors are nonnegative at all times, the sum of the values rt
pushed at each step exactly equals the sum of the values y(k),
i.e.

∑T
t=0 rt = eTy(k). Since y(k) = (1/(1− α))D−1x(k), we

then have that the sum of entries in (1/(1− α))x(k) equals
the sum of values pushed from the residual scaled by degree
and (1−α), i.e. eTx(k) = (1−α)

∑T
t=0 rt ·dj(t), where j(t) is

the node pushed in step t. We claim that the sum eTx(k) ≤ 1.
Assuming this for the moment, we get from the previous
equation that (1 − α)

∑T
t=0 rt · dj(t) = eTx(k) ≤ 1. But

each step of ppr-path operates on a residual value satisfying
rt ≥ ε, so we have

(1− α)

T∑
t=0

ε · dj(t) < (1− α)

T∑
t=0

rt · dj(t) ≤ 1.

Dividing by ε(1−α) completes the proof that the expression

for work,
∑T
t=0 dj(t), is bounded by O

(
ε−1(1− α)−1

)
.

Lastly, we justify the claim eTx(k) ≤ 1. Left-multiplying
the equations in (3) by (De)T and using stochasticity of v
gives

eT (I− αP)Dy(k) = eTDb− eTDr(k)

(1− α)eT 1
(1−α)x

(k) = eTv− eTDr(k)

eTx(k) = 1− eTDr(k). (6)

As noted above, all entries of the residual and iterative so-
lution vector are nonnegative at all times. The sum eTx(k)

cannot exceed 1, then, because that would imply that the
residual summed to a negative number, contradicting non-
negativity of the residual vector. Hence, eTx(k) ≤ 1.

Sorting and sweeping work. Here we account for the
work performed each step in maintaining the residual heap
Q(r), re-sorting the solution vector L(y), and updating the
sweep information for L(y). To ease the process, we first fix
some notation: denote the number of entries in the residual

heap Q(r) by |Q|, and the number of non-zero entries in the
sorted solution vector L(y) by |L|. We will bound both of
these quantities later on. We continue to use ∆t to denote
the number of rank positions changed in L(y) in step t.
Finally, recall that T denotes the number of iterations of the
algorithm required to terminate.

The work bounds we will prove, listed in the order in
which the ppr-path algorithm performs them, are as follows:

Operation actual work upperbound

Find max(r) 1 1
Delete max(r) log(|Q|) log(1

ε(1−α))

Bubblesort L(yj) ∆t T
Re-sweep L(y) dj + ∆t dj + T
Update r + rαPT ej dj dj
Re-heap Q(r) dj log(|Q|) dj log(1

ε(1−α))

The residual heap operations for deleting max Q(r), and re-
heaping the updated entries each require O(log(|Q|)) work,
where |Q| is the size of the heap, i.e. the number of nonzero
entries in the residual. We can upperbound this number
using the total number of pushes performed (since a nonzero
in the residual can exist only via a push operation placing it
there). We bound |Q| by O(ε−1(1− α)−1), then.

Re-sorting the solution vector via a bubblesort can involve
no more operations than the length of the solution vector.
Since a nonzero in entry yj can exist only if a step of the
algorithm operates on an entry rj , the number of nonzeros
in y is bounded by the number of steps of the algorithm,
i.e. |L| ≤ T . We believe this bound to be loose, but cannot
currently tighten it. Note that the work required in updating
sweep information also requires ∆t work, which we again up-
perbound by T . The dj term in updating sweep information
is from accessing the neighbors of the entry yj , the node
changing its rank.

The dominant terms in the above expression for work are
the re-heap updates and the bubblesort and re-sweep opera-
tions, which require a total of O(dj log(|Q|) + |L|) work each
step. Summing this over all T steps of the algorithm, we can
majorize work by O(log(|Q|) ·

∑T
t=0 dj)+O(

∑T
t=0 |L|), which

is upperbounded by O
(

1
ε(1−α) log(|Q|) + T · |L|

)
. Finally,

substituting in our loose upperbounds for T , |Q|, and |L|
mentioned above completes the proof:

O
(

1
ε(1−α) log(1

ε(1−α)) + 1
ε2(1−α)2

)
≤ O

(
1

ε2(1−α)2

)
.

4.4 Fast multi-parameter PPR
Here we present a fast framework for computing ε-approx-

imations of a PPR diffusion without computing a new dif-
fusion for each ε. This enables us to identify the optimal
output that would result from multiple diffusion computa-
tions for different ε values, but without having to do the
work of computing a new diffusion for each different ε.

The framework is compatible with every set of parameter
choices that allows for constant-time bin look-ups. More
precisely, the set of parameters ε0, ε1, . . . , εN must have an
efficient method for determining the index k such that, given a
value r, we have εk−1 > r ≥ εk. We focus on a set of ε values
that are taken from a log-spaced grid: that is, the parameters
are of the form εk = ε0θ

k for constants 0 < ε0, θ < 1.
Because we assume our ε parameters are taken from such a
grid, we call our method ppr-grid. Another possibly useful
case is choosing εk values taken from a Chebyshev-node like

grid, allowing for constant-time shelf-placement via cos−1

evaluations.
We emphasize that the underlying algorithm we use to

compute the PageRank diffusion is closely related to the the
push method discussed in Section 4.1 as implemented by [2];
in the case that only a single accuracy parameter is used,
the algorithms are identical. When more than one accuracy
setting is used, we employ a special data structure, which we
describe next.

Shelf structure.
The main difference between our algorithm ppr-grid and

previous implementations of the push method lies in our
data structure replacing the priority queue, Q, discussed in
ppr-path. Instead of inserting residual entries in a heap as
in ppr-path, we organize them in a system of arrays. Each
array holds entries between consecutive values of εk, so that
each array holds entries larger than the shelf below it. For
this reason, we call this system of arrays a “max-shelf”, H,
and refer to each individual array as a “shelf”, Hk.

The process is effectively a bucket sort: each shelf (or
bucket) of H holds entries of the residual lying between con-
secutive values of εk in the parameter grid. For parameters
ε0, ε1, . . . , εN , shelf Hk holds residual values r satisfying
εk−1 > r ≥ εk. Residual entries smaller than εN are omit-
ted from H (since convergence does not require operating
on them). Residual entries with values greater than ε0 are
simply placed in shelf H0.

PPR on a grid of ε parameters.
During the iterative step of ppr-grid, then, rather than

place a residual entry at the back of Q, we instead place
the entry at the back of the appropriate shelf, Hk. Once
all shelves Hm(r) are cleared for m ≤ k, then the residual
has no entries larger than εk, and so we have arrived at
an approximation vector satisfying convergence criterion
(2) with accuracy εk. At this point, we perform a sweep
procedure using the εk-solution. We then repeat the process
until the next shelf is cleared, and a new εk+1-solution is
produced.

PPR grid algorithm. The iterative step is as follows:
1. Determine the top-most non-empty shelf, Hk.
2. While H contains an entry in shelf k or above, do the

following:
2.1. Pop an entry on or above shelf Hk, say value r in

entry rj , and set rj = 0.
2.2. Add r to xj .
2.3. Add rαPT ej to r.
2.4. For each entry of r that was updated, move that

node to the correct shelf, Hm, where εm−1 > r ≥
εm. If an entry is placed on a shelf higher than k,
record the new top-shelf.

3. Shelves 0 through k are cleared, so the εk-solution is
done; perform a sweep.

Once all shelves are empty, the approximation with strictest
accuracy, ε, has been attained, and a final sweep procedure
is performed.

Shelf computation. In each iteration of ppr-grid we
must place multiple entries into their respective “shelves”.
Here we show that computing the correct shelf where a value
r will be placed can be accomplished in constant time.

Let εk = ε0θ
k for a fixed value of θ ∈ (0, 1). We want a

value r satisfying εk−1 > r ≥ εk to be placed on shelf k. If

r ≥ ε0, then we place r into shelf 0. Otherwise, making the
substitution εk = ε0θ

k and performing some algebra yields

k − 1 <
log(r/ε0)

log(θ)
≤ k,

so k can be computed by taking the ceiling of log(r/ε0)/ log(θ),
which is a constant time operation. Note that this process
requires that 0 < εk < 1 holds for all k, that θ ∈ (0, 1), and
that r > 0.

Top shelf. Each step of ppr-grid also requires determin-
ing the top non-empty shelf. This can be done in constant
time by tracking what the top shelf is during each residual
update. If k is the top shelf immediately prior to step (2.4),
then k will still be the top shelf after the residual update is
complete, unless one of the updates in step (2.4) moves an
entry to a shelf l < k. By checking for this event during the
update of each individual residual entry in step (2.4), we will
have knowledge of the top non-empty shelf at the beginning
of each step, with only constant work per step.

Once the current working shelf is emptied, then it is possi-
ble that the next non-empty shelf is many shelves down, i.e.
shelves Hk and higher are emptied and the next non-empty
shelf is Hk+c for some large number c. Then determining
k + c takes O(c) operations. However, this operation is per-
formed every time the algorithm switches from one value of
εk to the next. If there are N values of εk, then the total
work in all calls of this top-shelf computation is bounded by
O(N).

Theorem 2. Given a random walk transition matrix P =
AD−1, stochastic vector v, and input parameters α, θ ∈ (0, 1)
and εk = ε0θ

k with εN = ε, our ppr-grid algorithm outputs
the best-conductance set found from sweeps over εk-accurate
degree-normalized solution vectors x̂ to (I−αP)x = (1−α)v,
for all values εk for k = 0 through N . The work in computing
the diffusions is bounded by O(1

ε(1−α)). This improves on

the method of computing the N diffusions separately, which

is bounded by O
(

1
ε(1−α)(1−θ) (1− θN+1)

)
. The two methods

perform the same amount of sweep-cut work.

Proof. Note that the amount of push-work required to
produce a diffusion with smallest accuracy ε is exactly the
same as the push-work performed in computing an ε solution
via ppr-path; The only difference is in how we organize the
residual and solution vectors. Hence, the push-work for ppr-

grid is bounded by O(ε−1(1 − α)−1). Updating the shelf
structure for ppr-grid requires only a constant number of
operations in each iteration, and so the dominating operation
in one step of ppr-grid is the residual push work. Thus, the
push-work bound for ppr-grid is O(ε−1(1− α)−1).

Push-work for N separate diffusions. As noted above,
computing a diffusion with parameters εk and α requires
push-work O(ε−1

k (1− α)−1). Summing this over all values

of εk gives
∑N
k=0 ε

−1
k (1 − α)−1 = (1 − α)−1∑N

k=0(1/εk).

Substituting ε0θ
k in place of εk, we see this sum is simply

a scaled partial geometric series,
∑N
k=0 ε

−1
k = ε−1

0 θ−N (1−
θN+1)/(1− θ). Simplifying gives

N∑
k=0

1
εk(1−α)

= 1
ε(1−α)(1−θ)

(
1− θN+1

)
,

proving the bound on the push-work. For our choices ε0 =
10−1, ε = 10−6/3, and θ = 0.66 (which correponds to using

Table 1: Datasets
Graph |V | |E| dave

itdk0304 190,914 607,610 6.37
dblp 226,413 716,460 6.33
com-youtube 1,134,890 2,987,624 5.27
fb-one 1,138,557 4,404,989 3.9
fbA 3,097,165 23,667,394 15.3
ljournal 5,363,260 50,030,085 18.5
hollywood 1,069,126 56,306,653 105
twitter 41,652,230 1,202,513,046 57.7
friendster 65,608,366 1,806,067,135 55.1

N = 32 diffusions), this quantity is roughly 2.9 times greater
than computing only one diffusion, as our method does.

Sweep work. The number of operations required in
computing the diffusion is bounded by O(ε−1(1 − α)−1),
but this does not include the work done in sweeping over
the various εk-approximation vectors. The sweep operation
requires sorting the solution vector. As noted in the proof of
work for ppr-path, the number of nonzeros in the solution
vector is bounded by O(ε−1(1 − α)−1), and so the sorting
work is O(ε−1(1 − α)−1 log(ε−1(1 − α)−1)). This implies
that sorting is the dominant subroutine of the algorithm. In
practice the bound on the number of nonzeros in the solution
is loose, and the push operations comprise most of the labor.

5. EXPERIMENTAL RESULTS
We have presented two frameworks for computing a single

personalized PageRank diffusion across multiple parameter
settings. Here we analyze their performance on a set of real-
world social and information networks with varying sizes and
edge-densities. All datasets were altered to be symmetric and
have 0s on their diagonals; this is done by making all directed
edges undirected, and deleting any self-edges. In addition to
versions of the Facebook dataset analyzed in Section 2, we
test our algorithms on graphs including twitter-2010 from [19],
friendster from [34], dblp-2010 and hollywood-2009 in [4, 3],
idk0304 from [29], and ljournal-2008 in [7]. See Table 1 for a
summary of their properties.

Our first method, ppr-path, is aimed at studying how PPR
diffusions vary with the parameter ε. Toward this, Table 2
emphasizes the shear volume of distinct ε-approximations
that ppr-path explores. We also want to highlight both
the efficiency of our method over the naive approach for
computing the solution paths, and the additional information
that the solution paths provide compared to a single diffusion.

With this in mind, our experiment proceeds as follows. On
each data set, we selected 100 distinct nodes uniformly at
random, and ran three personalized PageRank algorithms
from that node, with the settings α = 0.99 and ε = 10−5.
Table 2 displays results for our solution paths algorithm
(“path” in the table) compared with two other algorithms
chosen to emphasize the runtime and the performance of
ppr-path.

To show how ppr-path scales compared to the runtime of
a single diffusion, and to emphasize that the solution paths
can locate better conductance sets in some cases, we compare
with a standard implementation for computing a single PPR
diffusion (“single” in Table 2). Column 3 in the table gives the
median runtime, taken over 100 trials, of the single diffusion.
To compare, column 4 gives the median ratio of “path” time
to “single” time. Although ppr-path is slower on the small

Data num ε Time Conductance

single path r. mult r. single best r.

itdk0304 5332 0.02 20.19 4336 0.11 0.56
dblp 8134 0.02 24.18 4502 0.12 0.89
fb-one 3474 0.01 5.72 4042 0.56 0.92
fbA 862 < .01 1.94 3817 0.69 0.86
ljournal 2795 0.01 3.66 4450 0.39 0.48
hollywood 382 < .01 1.13 4043 0.48 0.90
twitter 158 < .01 1.51 3300 0.84 0.95
friendster 408 < .01 1.56 3866 0.88 0.96

Table 2: Runtime and conductance comparison of
the solution paths (all accuracies from 10−1 to 10−5)
with (1) a single PPR diffusion with accuracy 10−5

(labelled “single”) and (2) 10,000 PPR diffusions, ac-
curacies k−1 for k = 1 to 10,000 (labelled “mult”).
An “r.” denotes that the quantity displayed is a ra-
tio of the performance of the indicated method with
the single diffusion’s performance. Column two dis-
plays the median number of distinct accuracy param-
eters ε explored by our algorithm ppr-path. On each
dataset we selected 100 distinct nodes uniformly at
random and ran the algorithms with the settings
α = 0.99 and ε = 10−5. Results reported are medians
over these 100 trials, except the column “best r.”
which lists the smallest (best) ratio of conductance
achieved by our ppr-path with conductance achieved
by a single diffusion.

graphs, on the larger graphs we see the runtime is nearly the
same as for a single PPR diffusion. At the same time, column
2 shows that “path” computes the results from hundreds or
even thousands of diffusions, a significant gain in information
over the single PPR diffusion. Finally, column 7 gives the
best ratio of conductance found by “path” compared to that
found by “single”. This shows that the solution paths can
improve conductance by 10% to even 50%.

To display the efficiency of our algorithm in computing
these many diffusion settings, we again use the standard PPR
implementation, but this time set to compute the diffusion
for every accuracy setting k−1 for k = 1 to 10, 000. This
algorithm is “mult” in Table 2, and is essentially a naive
method for approximating the solution paths. Column 5
gives the ratio of “mult” time to “single” time, and shows that
this naive approach to computing diffusions with multiple
accuracies is prohibitively slow – it is thousands of times
slower than our “path” method.

Lastly, we acknowledge here that both variations on the
PPR diffusion are naive approaches to the problem at hand.
However, currently there is no other algorithm for computing
the PPR solution paths which we can use as a more fair
baseline.

5.1 Runtime and Conductance: ppr-grid

We compare our second method ppr-grid with a method
called ppr-grow, which uses the push framework described in
Section 4.1. Both of these algorithms uses a variety of accu-
racy settings, and returns the set of best conductance found
from performing a sweep-cut over the diffusion vector result-
ing from each accuracy setting. The algorithm ppr-grow has
32 pre-set accuracy parameters εk. In contrast with ppr-

grid, which takes its accuracy parameters from a log-spaced
grid εk = ε0θ

k, the parameters for ppr-grow are chosen as the

inverses of values from the grid 10j ·
[

2 3 4 5 10 15
]

for j = 0, 1, · · · , 4, along with two additional parameters,
10−6/2 and 10−6/3.

In addition to α, our method ppr-grid has the parameters
ε0 and ε, the laxest and strictest accuracies (respectively),
and θ, which determines the fineness of the grid of accuracy
parameters. We use the values ε0 = 10−1 and ε = 10−6/3,
and use values of θ corresponding to N = 32, 64, and 1256
different accuracy parameters.

We emphasize that this comparison with the ppr-grow

method is not as naive as it might seem: out of the 32 calls
that it makes, in practice the very last call (with the strictest
value of ε) constitutes near 37% of the total runtime, so
making only a single call saves little work, and at the expense
of the information from the other 31 (smaller) approximations.
Furthermore, the primary optimizations that would be made
to the ppr-grow framework to improve on this are exactly the
optimizations that we make with our ppr-grid algorithm.

Because the two algorithms compute the same PageRank
diffusion, comparing their runtimes here allows us to study
what proportion of the total work is made up of redundant
push operations, and what proportion is comprised of the
sweep cut procedures, which both algorithms perform anew
for each diffusion. To study this, we highlight the results
in Table 3 which displays the runtimes for ppr-grow and
the ratios of the runtimes of ppr-grow with ppr-grid for
computing the best-conductance set from the same number
of different diffusions, N = 32. We also display ppr-grid

results for the cases N = 64 and 1256 to show how the
algorithm scales with the fineness of the grid.

To compare runtimes, we perform the following for each
different dataset. For 100 distinct nodes selected uniformly
at random, we ran both algorithms with the setting α =
0.99. We display the best (25%) and worst (75%) quartile
of performance of each algorithm and parameter setting. In
almost all cases, we see that ppr-grid with N = 32 has
a speedup of a factor 2 to 3. This is consistent with our
theoretical comparison of the two runtimes in Theorem 2,
which predicts a factor of 2.9 difference in the push-work
that the two algorithms perform.

The conductances displayed in Table 4 are taken from
the same trials as the runtime information in Table 3. As
with the table of runtimes, for each dataset the table gives
the 25% (best) and 75% (worst) percentiles of conductance
scores produced by each algorithm on the 100 trials. We see
nearly identical conductance scores for ppr-grow and ppr-

grid with N = 32, which we expect because the two perform
nearly identical work. It is interesting to note, however, that
increasing the number of diffusions can result in significantly
improved conductance scores in some cases, as with N = 1256
on the “fb-one” and “hollywood” datasets. This demonstrates
concretely the potential effect of using a broad swath of
parameter settings for ε. Moreover, it demonstrates that
even a finely spaced mesh of ε values, as with ppr-grow and
ppr-grid with N = 64, can miss informative diffusions.

6. RELATED WORK
There is a variety of work that considers the PageRank

vector as a function of the teleportation parameter α [5, 20].
Much of this work seeks to understand the sensitivity of the
problem with respect to α. For instance, we can compute

Data ppr-grow N = 32 N = 64 N = 1256

25 75 25 75 25 75 25 75

itdk0304 6.42 9.06 0.56 0.60 0.61 0.64 1.12 1.18
dblp 4.80 7.83 0.53 0.63 0.59 0.69 1.24 1.44
fb-one 1.46 1.96 0.33 0.38 0.44 0.51 3.65 4.33
fbA 0.55 0.74 0.46 0.54 0.62 0.70 5.93 6.71
ljournal 0.83 1.29 0.43 0.54 0.57 0.72 4.57 5.95
hollywood 0.33 1.07 0.36 0.52 0.46 0.66 3.33 5.15
twitter 0.17 0.44 0.41 0.45 0.55 0.62 4.41 5.47
friendster 0.31 0.44 0.39 0.45 0.52 0.60 4.09 4.58

Table 3: Runtime comparison of our ppr-grid with
ppr-grow. For each dataset, we selected 100 distinct
nodes uniformly at random and ran ppr-grow with 32
and ppr-grid with N different accuracy settings εk.
Columns 2 and 3 display the %25 and %75 runtimes
for ppr-grow (in seconds). The other column displays
the median over the 100 trials of the ratios of the
runtimes of the indicated algorithm/parameter set-
ting with the runtime of ppr-grid on the same node.
These results demonstrate empirically that our al-
gorithm with N = 32 achieves the factor of 2 to 3
speed-up predicted by our theory in Section 4.4.

the derivative of the PageRank vector with respect to α. It
is also used to extrapolate solutions to accelerate PageRank
methods [6]. More recently, varying α was used to show a
relationship between personalized-PageRank-like vectors and
spectral clustering [23].

As we already mentioned, regularization paths are com-
mon in statistics [8, 14], and they help guide model selection
questions. In terms of clustering and community detection,
solution paths are extremely important for a new type of
convex clustering objective function [22, 16]. Here, the solu-
tion path is closely related to the number of clusters in the
model.

As recently established by Ghosh et al. [9], there are many
related diffusion methods that all share Cheeger-like inequal-
ities for specific definitions of conductance. They also es-
tablished local algorithms to compute them by adapting the
push procedure. We anticipate that our path-tracking al-
gorithm could apply to any of these diffusions as well. For
instance, our recent result on estimating the heat kernel dif-
fusion in large graphs is based on the push step as well [17];
we anticipate mild difficulty in adapting our results to that
diffusion.

7. CONCLUSIONS AND DISCUSSION
We proposed two algorithms that utilize the push step

in new ways to generate refined insights on the behavior
of diffusions in networks. The first is a method to rapidly
estimate the degree-normalized PageRank solution path as
a function of the tolerance ε. This method is slower than
estimating the solution of a single diffusion in absolute run
time, but still fast enough for use on large graphs. We de-
signed that method, and the associated degree-normalized
PageRank solution path plot, in order to reveal new insights
about local regions in large networks. The second method
is a fast approximation to the solution path on a grid of
logarithmically-spaced ε values. It uses an interesting appli-
cation of bucket sort to efficiently manage these diffusions.

Data grow N = 32 N = 64 N = 1256

25 75 25 75 25 75

itdk0304 0.06 1.00 1.00 0.99 1.00 0.98 1.00
dblp 0.07 1.00 1.00 1.00 1.00 0.99 1.00
fb-one 0.37 0.86 0.95 0.79 0.91 0.73 0.85
fbA 0.56 0.96 1.00 0.94 1.00 0.92 1.00
ljournal 0.32 0.99 1.00 0.99 1.00 0.99 1.00
hollywood 0.25 0.97 1.00 0.97 1.00 0.95 1.00
twitter 0.81 1.00 1.00 1.00 1.00 1.00 1.00
friendster 0.85 1.00 1.00 0.99 1.00 0.99 1.00

Table 4: Conductance comparison of our ppr-grid

with ppr-grow. Column 2 displays the median of the
conductances found by ppr-grow in the same 100 tri-
als presented in Table 3. The other columns display
the 25% and 75% percentiles of the ratio of the con-
ductances achieved by ppr-grow and ppr-grid for the
same seed set. For example, on the dataset ‘fb-one’,
ppr-grid with N = 1256 accuracy settings found con-
ductances 15% better than those found by ppr-grow —
and that comparison is on the quartile of trials where
ppr-grid compares the worst to ppr-grow.

We demonstrate that both of these algorithms are fast and
local on large networks.

There is a variety of future work we consider in the spirit
of this research. First, we hope to tackle the solution path
problem for the exact regularized PageRank problem [11].
This is more difficult as solutions depends on a precise KKT
condition. On the other hand, they are always unique unlike
the paths we consider here. Second, we plan to extend the
solution path framework to other diffusions as discussed
in the related work section. Finally, there is much room to
optimize our software implementations. We designed the ppr-
grid method for dense solutions. On many massive graphs,
however, the solutions do not densify before the method
terminates (although we know they do eventually). We plan
to dynamically switch between efficient sparse and dense
codes. This will allow us to take advantage of processor
caches and should provide a meaningful improvement in
speed.

Acknowledgements
We thank the following people for their careful reading of
several early drafts: Huda Nassar, Bryan Rainey, and Varun
Vasudevan. This work was supported by NSF CAREER
Award CCF-1149756.

8. REFERENCES
[1] R. Andersen and F. Chung. Detecting sharp drops in pagerank

and a simplified local partitioning algorithm. In Theory and
Applications of Models of Computation, pages 1–12. 2007.

[2] R. Andersen, F. Chung, and K. Lang. Local graph partitioning
using PageRank vectors. In FOCS, 2006.

[3] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and
S. Vigna. The query-flow graph: Model and applications. In
Proceedings of the 17th ACM Conference on Information and
Knowledge Management, CIKM ’08, pages 609–618, New York,
NY, USA, 2008. ACM.

[4] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label
propagation: A multiresolution coordinate-free ordering for
compressing social networks. In Proceedings of the 20th
WWW2011, pages 587–596, March 2011.

[5] P. Boldi, M. Santini, and S. Vigna. PageRank: Functional
dependencies. ACM Trans. Inf. Syst., 27(4):1–23, 2009.

[6] C. Brezinski, M. Redivo-Zaglia, and S. Serra-Capizzano.
Extrapolation methods for pagerank computations. Comptes
Rendus Mathematique, 340(5):393 – 397, March 2005.

[7] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher,
A. Panconesi, and P. Raghavan. On compressing social
networks. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, KDD ’09, pages 219–228, New York, NY, USA, 2009.
ACM.

[8] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least
angle regression. Ann. Statist., 32(2):407–499, 04 2004.

[9] R. Ghosh, S.-h. Teng, K. Lerman, and X. Yan. The interplay
between dynamics and networks: Centrality, communities, and
cheeger inequality. In KDD, pages 1406–1415, 2014.

[10] D. F. Gleich. PageRank beyond the web. arXiv,
cs.SI:1407.5107, 2014.

[11] D. F. Gleich and M. M. Mahoney. Algorithmic
anti-differentiation: A case study with min-cuts, spectral, and
flow. In ICML, pages 1018–1025, 2014.

[12] D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low
conductance cuts, and good seeds for local community methods.
In KDD, pages 597–605, Aug. 2012.

[13] T. Gutierrez-Bunster, U. Stege, A. Thomo, and J. Taylor. How
do biological networks differ from social networks? (an
experimental study). In ASONAM, pages 744–751, 2014.

[14] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction.
Springer, 2009.

[15] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu,
L. Akoglu, D. Koutra, C. Faloutsos, and L. Li. Rolx: Structural
role extraction and mining in large graphs. In KD, pages
1231–1239, 2012.

[16] T. Hocking, J.-P. Vert, A. Joulin, and F. R. Bach. Clusterpath:
an algorithm for clustering using convex fusion penalties. In
ICML), pages 745–752, 2011.

[17] K. Kloster and D. F. Gleich. Heat kernel based community
detection. In KDD, pages 1386–1395, 2014.

[18] I. M. Kloumann and J. M. Kleinberg. Community membership
identification from small seed sets. In KDD, 2014.

[19] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a
social network or a news media? In WWW ’10: Proceedings of
the 19th international conference on World wide web, pages
591–600, New York, NY, USA, 2010. ACM.

[20] A. N. Langville and C. D. Meyer. Google’s PageRank and
Beyond: The Science of Search Engine Rankings. Princeton
University Press, 2006.

[21] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters. Internet
Mathematics, 6(1):29–123, September 2009.

[22] F. Lindsten, H. Ohlsson, and L. Ljung. Just relax and come
clustering! a convexification of k-means clustering. Technical
report, Linköpings universitet, 2011.

[23] M. W. Mahoney, L. Orecchia, and N. K. Vishnoi. A local
spectral method for graphs: With applications to improving
graph partitions and exploring data graphs locally. Journal of
Machine Learning Research, 13:2339–2365, August 2012.

[24] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online social
networks. In Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, IMC ’07, pages 29–42,
New York, NY, USA, 2007. ACM.

[25] B. L. Mooney, L. R. Corrales, and A. E. Clark.
MoleculaRnetworks: An integrated graph theoretic and data
mining tool to explore solvent organization in molecular
simulation. J. Comput. Chem., 33(8):853–860, 2012.

[26] M. E. J. Newman. Finding community structure in networks
using the eigenvectors of matrices. Phys. Rev. E, 74(3):036104,
September 2006.

[27] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu.
Automatic multimedia cross-modal correlation discovery. In
KDD, pages 653–658, 2004.

[28] R. Singh, J. Xu, and B. Berger. Global alignment of multiple
protein interaction networks with application to functional
orthology detection. PNAS, 105(35):12763–12768, 2008.

[29] C. (The Cooperative Association for Internet Data Analyais).
Network datasets. http:
//www.caida.org/tools/measurement/skitter/router_topology/,
2005. Accessed in 2005.

[30] R. Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B
(Methodological), 58(1):267–288, 1996.

[31] K. Voevodski, S.-H. Teng, and Y. Xia. Spectral affinity in
protein networks. BMC Systems Biology, 3(1):112, 2009.

[32] J. J. Whang, D. F. Gleich, and I. S. Dhillon. Overlapping
community detection using seed set expansion. In CIKM, pages
2099–2108, 2013.

[33] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao.
User interactions in social networks and their implications. In
EuroSys, pages 205–218, 2009.

[34] J. Yang and J. Leskovec. Defining and evaluating network
communities based on ground-truth. In Data Mining (ICDM),
2012 IEEE 12th International Conference on, pages 745–754,
Dec 2012.

[35] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf.
Learning with local and global consistency. In NIPS, 2003.

[36] X.-N. Zuo, R. Ehmke, M. Mennes, D. Imperati, F. X.
Castellanos, O. Sporns, and M. P. Milham. Network centrality
in the human functional connectome. Cerebral Cortex, 2011.

http://www.caida.org/tools/measurement/skitter/router_topology/
http://www.caida.org/tools/measurement/skitter/router_topology/

	Introduction
	Personalized PageRank paths
	Technical Preliminaries
	Algorithms
	Push operation
	Convergence criterion
	PageRank solution paths
	Fast multi-parameter PPR

	Experimental Results
	Runtime and Conductance: ppr-grid

	Related work
	Conclusions and discussion
	References

