FS80N 27 MA 16100 FALL 2022 DR. HOOD

warm up

What is the equation of the line tangent to $f(x)=\sqrt{x}$ at the point $(4,2)$?
a) $y=\frac{1}{2} x$

$$
\text { slope } f^{\prime}(4)
$$

b) $y=\frac{1}{4} x+1$

$$
\begin{aligned}
=\left.\frac{1}{2} x^{-1 / 2}\right|_{x=4} & =\frac{1}{2}(4)^{-1 / 2} \\
& =\frac{1}{4}
\end{aligned}
$$

c) $y=x-2$

$$
=\frac{1}{4}
$$

ANNOUNCEMENTS

- Dr. Hood's Office Hours in Math 844
- Mon and Wed at 3:30-4:30pm
- Friday at 2:30-3:30pm
- TA's Office Hours in the Math Resource Room
- WTHR 313
- Mon - Thu from 9:30am - 8:30pm
o Fri from 9:30am - 3:30pm

ANNOUNCEMENTS

- Thanksgiving Break
-University Holiday is Wed Nov 23 - Fri Nov 25
-MA 161 additional breaks:
- No class on Mon Nov 21
- No recitation on Tue Nov 22
- No HW or Quizzes that week
- Math Resource Room closed Mon Nov 21 - Fri Nov 25
- No Office Hoars

POLL 1

What is the percent error of $\sin (0.1)$ using the small angle approximation $\sin (x) \approx x$?
a) 0.167%

$$
\begin{aligned}
& \sin (0.1)=0.09983 \ldots \\
& \left|\frac{\text { approx -exact }}{\text { exact }}\right| \times 100 \\
& =\left|\frac{0.1-\sin (0.17)}{\sin (0.1)}\right| \times 100 \\
& =0.167 \%
\end{aligned}
$$

b) 0.002%
c) 0.017%

POLL 2
Use differentials to estimate ΔA when $r=4$, $\Delta r=0.1$, and $A(r)=\pi r^{2}$.
a) 0.8π

$$
\Delta A \approx A^{\prime}(4) \Delta r
$$

b) 8π

$$
=\left.(2 \pi r)\right|_{r=4}(0,1)
$$

c) 1.6π
$=8 \pi(0.1)$
$=0.8 \pi$

