LESSOR 28 MA 16100 FALL 2022 DR. HOOD

warm up

Evaluate the limit:

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x^{2}-x}{x^{2}-1}=\frac{0}{0} \\
& =\lim _{x \rightarrow 1} \frac{x(x-1)}{(x-1)(x+1)}=\frac{1}{1+1}=\frac{1}{2}
\end{aligned}
$$

a)

ANNOUNCEMENTS

- Dr. Hood's Office Hours in Math 844
- Friday Nov 4 at 2-3pm
- TA's Office Hours in the Math Resource Room
- WTHR 313
- Mon - Thu from 9:30am - 8:30pm
o Fri from 9:30am - 3:30pm

ANNOUNCEMENTS

- Thanksgiving Break
-University Holiday is Wed Nov 23 - Fri Nov 25
-MA 161 additional breaks:
- No class on Mon Nov 21
- No recitation on Tue Nov 22
- No HW or Quizzes that week
- No Office Hours on Mon Nov 21
- Math Resource Room closed Mon Nov 21 - Fri Nov 25

POLL 1

Use L'Hopital's Rule to evaluate:
$\rightarrow \frac{0}{0}$

$$
\begin{gathered}
\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-4} \\
(L)=\lim _{x \rightarrow 2} \frac{2 x+1}{2 x}=\frac{5}{4}
\end{gathered}
$$

b) 1
c) $\frac{3}{2}$

POLL 2

Discussion Question:

x	$f(x)$
10	2.593
100	2.705
1000	2.717
10^{4}	2.718

$$
\approx(1)^{x}=1 \quad \approx(1+h)^{x}>1
$$

a) True (b) False
c) Not sure

POLL 3

Consider $f(x)=x^{2}$ and $g(x)=2^{x}$. Which function grows faster as $x \rightarrow \infty$?
a) $x^{2} \quad \lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}} \rightarrow \frac{\infty}{\infty}$
b) $2^{x}=\lim _{x \rightarrow \infty} \frac{2 x}{2^{x}(\ln (2))}$
(ㄷ) $\lim _{x \rightarrow \infty} \frac{2}{2^{x}(\ln (2))^{2}}$ $=0$
c) They grow at the same rate
2^{x} grows faster than x^{2}

