[8801 29 MA 16100 FALL 2022 DR. HOOD

WARM UP
Let $F(x)=x^{3}, G(x)=x^{3}+7$, and $H(x)=x^{3}-10,000$.

$$
\begin{aligned}
& F^{\prime}(x)=3 x^{2} \\
& G^{\prime}(x)=3 x^{2}+0
\end{aligned}
$$

$$
\text { Then } F^{\prime}(x)=G^{\prime}(x)=H^{\prime}(x) \quad H^{\prime}(x)=3 x^{2}
$$

b) False

ANNOUNCEMENTS

- Dr. Hood's Office Hours in Math 844
- Mon, Wed: 3:30-4:30pm
- Fri: 2:30-3:30pm
- TA's Office Hours in Math Resource Room (WTHR 313)
- Mon - Thu: 9:30am - 8:30pm
- Fri: 9:30am - 3:30pm

EXAM 3

- Exam 3 is Tuesday Nov 15
- 6:30-7:30pm in ELLT
- Brightspace > "Content" > "Exam 3"
- Study Guide
- Frequently Asked Questions
- Exam Conflict Form

THANKSGIVING BREAK

- Thanksgiving Break
-University Holiday is Wed Nov 23 - Fri Nov 25
-MA 161 additional breaks:
- No class on Mon Nov 21
- No recitation on Tue Nov 22
- No HW or Quizzes that week
- No Office Hours on Mon Nov 21
- Math Resource Room closed Mon Nov 21 - Fri Nov 25

POLL 1
Let $f(x)=x^{n}$. Find all the possible antiderivatives $F(x)$.
a) $F(x)=n x^{n-1}+C$

$$
\frac{d}{d x}\left[\frac{x^{n+1}}{n+1}+C\right]
$$

b) $F(x)=x^{n+1}+C$

$$
=\frac{(n+1) x^{(n+1)-1}}{(n+1)}+0
$$

c) $F(x)=\frac{x^{n+1}}{n+1}+C=x^{n}$

POLL 2

$$
\begin{aligned}
& \int x^{-1} d x=\frac{x^{-1+1}=\frac{x^{0}}{2}}{-1+1} \\
& \int\left(\frac{1}{x}\right) d x=? \quad \frac{d}{d x}(1+c)=0
\end{aligned}
$$

a) $1+C$

$$
\frac{d}{d x}(\ln |x|+c)=\frac{1}{x}
$$

(b) $\ln |x|+C$
c) $\frac{1}{x^{2}}+C$

