MA 16100'FALL 2022

DR. HOOD

WARM UP

Let
$$F(x) = x^3$$
, $G(x) = x^3 + 7$, and $H(x) = x^3 - 10,000$.

$$H(x) = x^3 - 10,000.$$
 $F'(x) = 3x^2$ $G'(x) = G'(x) = H'(x)$ Then $F'(x) = G'(x) = H'(x)$ $H'(x) = 3x^2$

a) True

b) False

ANNOUNCEMENTS

- Dr. Hood's Office Hours in Math 844
 - Mon, Wed: 3:30-4:30pm
 - o Fri: 2:30-3:30pm

- TA's Office Hours in Math Resource Room (WTHR 313)
 - Mon Thu: 9:30am 8:30pm
 - Fri: 9:30am 3:30pm

EXAM 3

- Exam 3 is Tuesday Nov 15
 - 6:30 7:30pm in ELLT

- Brightspace > "Content" > "Exam 3"
 - Study Guide
 - Frequently Asked Questions
 - Exam Conflict Form

THANKSGIVING BREAK

- Thanksgiving Break
 - -University Holiday is Wed Nov 23 Fri Nov 25
 - -MA 161 additional breaks:
 - No class on Mon Nov 21
 - No recitation on Tue Nov 22
 - No HW or Quizzes that week
 - No Office Hours on Mon Nov 21
 - Math Resource Room closed Mon Nov 21 Fri Nov 25

POLL 1

Let $f(x) = x^n$. Find all the possible antiderivatives F(x).

a)
$$F(x) = nx^{n-1} + C$$

b)
$$F(x) = x^{n+1} + C$$

(c)
$$F(x) = \frac{x^{n+1}}{n+1} + C$$

$$\frac{d}{dx}\left[\frac{x}{n+1}+C\right]$$

$$\frac{d}{dx}\left[\frac{n+1}{n+1}-1\right]$$

POLL 2

$$\int \frac{1}{2\pi} dx = \frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi}$$

$$\int \frac{1}{2\pi} dx = \frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi}$$

$$\int \frac{1}{2\pi} dx = \frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi} \frac{1}{2\pi}$$

$$\int \left(\frac{1}{x}\right) dx = ?$$

a)
$$1 + C$$

$$\frac{d}{dx}\left(\frac{h|2|+C}{z}\right) = \frac{1}{2}$$

(b)
$$\ln|x| + C$$

c)
$$\frac{1}{x^2} + C$$