LESSOR 32 MA 16100 FALL 2022 DR. HOOD

Use geometry to calculate the definite integral:

$$
\int_{0}^{2}(3+t) d t
$$

$$
\text { a) } 6
$$

$$
\text { b) } 2
$$

ANNOUNCEMENTS

- Dr. Hood's Office Hours in Math 844
- Mon, Wed: 3:30-4:30pm
- Fri: 2:30-3:30pm
- TA's Office Hours in Math Resource Room (WTHR 313)
- Mon - Thu: 9:30am - 8:30pm
- Fri: 9:30am - 3:30pm

THANKSGIVING BREAK

- University Holiday is Wed Nov 23 - Fri Nov 25
- MA 161 additional breaks:
-No class on Mon Nov 21
-No recitation on Tue Nov 22
-No HW or Quizzes that week
-No Office Hours on Mon Nov 21
-Math Resource Room closed Mon Nov 21 - Fri Nov 25
-No SI on Nov 20 - Nov 25

$$
\begin{aligned}
& \text { PDL1 } \\
& \text { Let } A(x)=\int_{0}^{x} \sin (t) d t . \\
& \text { What is } A^{\prime}(x) \text { ? } \\
& \quad \text { FTc } \\
& \frac{d}{x} \int_{0}^{x} f(t) d t=f(x)
\end{aligned}
$$

c) $-\cos (x)$

POLL 2
 $f(x)=\frac{1}{x}$
 $F(x)=\ln (x)$

Use the Fundamental Theorem of Calculus to evaluate:

$$
\begin{aligned}
\int_{3}^{6} \frac{1}{x} d x=[\ln (x)]_{3}^{6} & =\ln (6)-\ln (3) \\
& =\ln \left(\frac{6}{3}\right) \\
& =\ln (2) \\
\text { b) }-\frac{1}{6} & \text { c) } \ln (3)
\end{aligned}
$$

a) $\ln (2)$

