LSSSOR 33
 MA 16100 FALL 2022 DR. HOOD

Use the Fundamental Theorem of Calculus to calculate the definite integral:

ANNOUNCEMENTS

- Dr. Hood's Office Hours in Math 844
- Mon, Wed: 3:30-4:30pm
- Fri: 2:30-3:30pm
- TA's Office Hours in Math Resource Room (WTHR 313)
- Mon - Thu: 9:30am - 8:30pm
- Fri: 9:30am - 3:30pm

THANKSGIVING BREAK

- University Holiday is Wed Nov 23 - Fri Nov 25
- MA 161 additional breaks:
-No class on Mon Nov 21
-No recitation on Tue Nov 22
-No HW or Quizzes that week
-No Office Hours on Mon Nov 21
-Math Resource Room closed Mon Nov 21 - Fri Nov 25
-No SI on Nov 20 - Nov 25

POLL 1

Is $f(x)=1+|x|^{3}$ odd, even, or neither?

$$
f(-x)=1+|-x|^{3}=1+|x|^{3}=f(x)
$$

even
a) Odd
b) Even
c) Neither

$$
\begin{aligned}
\int_{a}^{a} f(x) d x & =2 \int_{0}^{a}\left(1+|x|^{3}\right) d x \\
& =2 \int_{0}^{a}\left(1+x^{3}\right) d x
\end{aligned}
$$

1D $T F(x)$ is an autideriv

$$
F^{\prime}(x)=f(x)
$$

Which function is an antiderivative of

$$
f(x)=\left(x^{2}+3\right)^{4}(2 x) ?
$$

a) $\left(x^{2}+3\right)^{4}$

$$
\begin{aligned}
& (2 x) ? \\
& 8 \frac{d}{d x}\left[\frac{1}{5}\left(x^{2}+3\right)^{5}\right]=u=x \\
& =\frac{d}{d x}\left[\frac{1}{5} u^{5}\right]=\frac{d}{d u}\left[\frac{u^{5}}{5}\right] \cdot \frac{d u}{d x} \\
& =\frac{\frac{5 u^{4}}{5}}{4} \cdot \frac{d u}{d x}=\left(x^{2}+3\right)^{4}(2 x)
\end{aligned}
$$

c) $\left(x^{2}+3\right)^{5}(2 x)$

POLL 3
If you want to use u-substitution to calculate the antiderivative:

$$
\begin{aligned}
\int \frac{\sin (x)}{\cos (x)} d x & =\int-\frac{d u}{u} \\
& =-\ln |u|+c
\end{aligned}
$$

What should you choose to be u ? $=-\ln |\cos (x)|+c$

$$
\int \frac{u d u}{\cos ^{2}(x)}
$$

a) $u=\cos (x)$
b) $u=\sin (x)$
c) $u=\tan (x)$

$$
d u=-\sin (x) d x
$$

$d u=\cos (x) d x$
$d u=\sec ^{2}(x) d x$

