### **LESSON 35** MA 16100'FALL 2022 DR. HOOD



# ANNOUNCEMENTS

- Dr. Hood's Office Hours in Math 844
  - o Mon, Wed: 3:30-4:30pm
  - o Fri: 2:30-3:30pm

- TA's Office Hours in <u>Math Resource Room</u> (WTHR 313)
  Mon Thu: 9:30am 8:30pm
  - Fri: 9:30am 3:30pm

# ANNOUNCEMENTS

- Exam 3 Scores most are posted
  - -Regrade Request:

https://purdue.ca1.qualtrics.com/jfe/form/SV\_0cU4iadAh8Txeqa

• Must be submitted by 5pm Friday Dec 9

• Final Exam

-Tuesday Dec 13 at 8:00 am - 10:00 am

## POLL 1

If  $\frac{dy}{dt} = 0.03y$ , then which of the following functions could be y(t)?  $\frac{dy}{dt} = \frac{d}{dt} (Ae^{0.03t})$ a)  $y(t) = A\cos(0.03t)$  $= A(e^{0.03t}.0.03)$ *b)* y(t) = 0.03t + C10.03) (Ae  $y(t) = Ae^{0.03t}$ 

# POLL 2

If Alice initially starts with  $y_0 = 500$  dollars in her savings account, how long will it take her to save up for her new phone at \$1000?  $y(t) = 500e^{0.03t} = 1000$ 23 years  $ln(e^{0.03t} = 2)$  0.03t = ln(2)b) 0.7 years t = lm(z),doubling 48 years

#### **POLL3** $10000e^{-0.05t} = 5000$ $h(e^{-0.05t} = \frac{1}{2})$

If the population is  $y(t) = 10000e^{-0.05t}$ then how long will it take for the population to halve? (i.e. y(t) = 5000?)  $-0.05t = ln(\frac{1}{2})$ half-life  $\rightarrow f = ln(\frac{1}{2})$ c)  $t = 0.05 \ln(\frac{1}{2})$  $\ln\left(\frac{1}{2}\right)$ a)  $t = \frac{-0.05}{\ln(\frac{1}{2})}$ ≈ 13.8 years