LSSON 38 MA 16100 FALL 2022 DR. HOOD

WARM UPUse Substitution Rule to evaluate:
a) $4 e^{3 t}+C$

$$
\begin{aligned}
\int 12 e^{3 t} d t & \\
u & =3 t \\
d u & =3 d t \\
\frac{d u}{3} & =d t \\
\int 4 e^{u} d u & =4 e^{u}+c \\
& =4 e^{3 t}+C
\end{aligned}
$$

b) $12 e^{3 t}+C$

ANNOUNCEMENTS

- Dr. Hood's Office Hours in Math 844
- Mon, Wed: 3:30-4:30pm
- Fri: 2:30-3:30pm
- TA's Office Hours in Math Resource Room (WTHR 313)
- Mon - Thu: 9:30am - 8:30pm
- Fri: 9:30am - 3:30pm

ANNOUNCEMENTS

- Exam 3 Scores - most are posted
-Regrade Request: https://purdue.ca1.qualtrics.com/ife/form/SV 0cU4iadAh8Txeqa
- Must be submitted by 5pm Friday Dec 9
- Final Exam
-Tuesday Dec 13 at 8:00 am-10:00 am

POLL 1

If $\frac{d y}{d t}=0.03 y$, then which of the following functions could be $y(t)$?
a) $y(t)=A \cos (0.03 t)$
b) $y(t)=0.03 t+C \quad=A\left(e^{0.03 t} \cdot 0.03\right)$
c) $y(t)=A e^{0.03 t}$

$$
\begin{aligned}
& =(0.03)\left(A e^{0}\right. \\
\frac{d y}{d t} & =(0.03) y
\end{aligned}
$$

$$
0.03 t
$$

POLL 2

If Alice initially starts with $y_{0}=500$ dollars in her savings account, how long will it take her to save up for her new phone at $\$ 1000$?
a) 23 years
b) 0.7 years
c) 48 years

$$
\begin{aligned}
y(t)=500 e^{0.03 t} & =1000 \\
\ln \left(e^{0.03 t}\right. & =2) \\
\text { ding } \quad 0.03 t & =\ln (2) \\
\text { ne } & =\frac{\ln (2)}{0.03} \approx 23
\end{aligned}
$$

$$
\left\{_{\text {doubling }} \begin{array}{rl}
\ln \left(e^{0.03 t}\right. & =2) \\
0.03 t=\ln (z) \\
t=\ln (2)
\end{array}\right.
$$

$$
\begin{aligned}
& 10000 e^{-0.05 t}=5000 \\
& \ln \left(e^{-0.05 t}=\frac{1}{2}\right)
\end{aligned}
$$

If the population is $y(t)=10000 e^{-0.05 t}$, then how long will it take for the population to halve? (ie. $y(t)=5000$?) $-0.05 t=\ln \left(\frac{1}{2}\right)$
half-life $\longrightarrow t=\frac{\ln \left(\frac{1}{2}\right)}{-0.05}$
a) $t=\frac{-0.05}{\ln \left(\frac{1}{2}\right)}$
b) $t=\frac{\ln \left(\frac{1}{2}\right)}{-0.05}$
c) $t=0.05 \ln \left(\frac{1}{2}\right)$

