Problem 1

This practice exam is provided as a way for students to practice solving the exam under a time limit. We suggest that you set a timer for 60 minutes, put away your notes and calculator, and solve the exam in one sitting.

On the real exam, you will earn 4 points for correctly filling out the scantron. The real exam is multiple choice graded all-or-nothing. (In this practice exam, ignore any prompts to show your work. While showing your work is good practice, on the exam it will not be graded.)

Answer =

Problem 2

The extreme values of $f(x, y, z)=3 x+2 y+6 z$ with constraint $x^{2}+y^{2}+z^{2}=4$ are.
To receive the full 5 points, you must show all your work on this problem.
A. The maximum of f is 7 and the minimum of f is -7
B. The maximum of f is 28 and the minimum of f is -28
C. The maximum of f is 14 and the minimum of f is -7
D. The maximum of f is 7 and the minimum of f is -14
E. The maximum of f is 14 and the minimum of f is -14

Problem 3

Compute the double integral $\iint_{R} \cos (x+y) d A$, where R is the rectangle $[0, \pi] \times[0, \pi]$.
A. -2
B. -4
C. 2
D. 0
E. 4

Problem 4

Reverse the order of integration and evaluate the double integral: $\int_{0}^{1} \int_{x^{2}}^{1} 6 \sqrt{y} \cos \left(y^{2}\right) d y d x$
A. $\sin (1)$
B. $3 \cos (1)$
C. $2 \cos (1)-2$
D. $3 \sin (1)$
E. $2 \sin (1)$

Problem 5

Let D be the region in the first quadrant between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$. Evaluate the integral $\iint_{D} \frac{x^{2} y}{\left(x^{2}+y^{2}\right)^{3 / 2}} d A$.
A. $14 / 3$
B. $1 / 2$
C. 10/3
D. 5/6
E. 3/2

Problem 6

Compute the triple integral

$$
\iiint_{E} 3 y d V
$$

where E is a region under the plane $x+y+z=2$ in the first octant.
A. 1
B. 3
C. 6
D. 4
E. 2

Problem 7

(8 points)
The integral
$\int_{0}^{\sqrt{2}} \int_{-\sqrt{2-x^{2}}}^{\sqrt{2-x^{2}}} \int_{\sqrt{3 x^{2}+3 y^{2}}}^{\sqrt{8-x^{2}-y^{2}}} x y^{2} z d z d y d x$
when converted to cylindrical coordinates becomes
A. $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\sqrt{2}} \int_{\sqrt{3} r}^{\sqrt{8-r^{2}}} r^{4} z \cos \theta \sin ^{2} \theta d z d r d \theta$
B. $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\sqrt{2}} \int_{\sqrt{3} r}^{\sqrt{8-r^{2}}} r^{3} z \cos \theta \sin ^{2} \theta d z d r d \theta$
C. $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2} \int_{\sqrt{3} r}^{\sqrt{8-r^{2}}} r^{4} z \cos \theta \sin ^{2} \theta d z d r d \theta$
D. $\int_{0}^{\pi} \int_{0}^{\sqrt{2}} \int_{\sqrt{3} r}^{\sqrt{8-r^{2}}} r^{4} z \cos \theta \sin ^{2} \theta d z d r d \theta$
E. $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{2} \int_{\sqrt{3}}^{{ }^{3}} \quad r^{\sqrt{ } 8-r^{2}} z \cos \theta \sin ^{2} \theta d z d r d \theta$

Problem 8

Compute $\iint_{E} z d V$, where E is bounded by the sphere $x^{2}+y^{2}+z^{2}=1$ and the coordinate planes in the first octant.
A. $\frac{3 \pi}{8}$
B. $\frac{\pi}{16}$
C. $\frac{\pi}{8}$
D. $\frac{\pi}{12}$
E. $\frac{\pi}{6}$

Problem 9

A lamina with density $\rho(x, y)=x y$ occupies the region of the plane bounded by $y=x^{2}, y=1$ and $x=0$. The mass of lamina is equal to $\frac{1}{6}$. Find the y-coordinate of its center of mass.
A. $2 / 3$
B. $3 / 4$
C. 5/6
D. $12 / 21$
E. $7 / 8$

Problem 10

(8 points)
Let $f(x, y, z)=x^{2}+y^{3}+z^{4}$ and $g(x, y, z)=3 x+4 y+\frac{z^{2}}{2}$. If $\vec{\nabla} f(2,1,-1)$ is perpendicular to $\vec{\nabla} g(a, b, c)$, then
A. $c=10$
B. $c=6$
C. $c=2$
D. $c=8$
E. $c=4$

Problem 11

Compute the line integral $\int_{C}\left(4 x^{3}+y^{3}\right) d s$, where C is the line segment from $(0,0)$ to $(1,2)$.
A. 0
B. $3 \sqrt{5}$
C. $\sqrt{ } 5 \pi$
D. -5
E. $\frac{5 \sqrt{5}}{4}$

Problem 12

Evaluate the line integral $\int_{C} x y d x-y^{2} d y$, where C is the line segment from $(0,0)$ to $(2,6)$.
A. 42
B. 36
C. -64
D. -44
E. -36

Problem 13

Compute the line integral $\int_{C} F \cdot d r$, where $F=\langle y z, x z, x y\rangle$ and the curve C is parametrized by $r(t)=\left\langle t^{2}, t, t^{3}-3 t\right\rangle, 1 \leq t \leq 2$.
A. 18
B. 10
C. -16
D. 0
E. 8π

Answer Key

PROBLEM

ANSWER
1.

Name
2.
E. The maximum of f is 14 and the minimum of f is -14
3.
B. -4
4.
D. $3 \sin (1)$
5.
B. $1 / 2$
6.
E. 2
7.
A. $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\sqrt{2}} \int_{\sqrt{3} r}^{\sqrt{8-r^{2}}} r^{4} z \cos \theta \sin ^{2} \theta d z d r d \theta$
8.
B. $\frac{\pi}{16}$
9.
B. 3/4
10.
B. $c=6$
11.
B. $3 \sqrt{5}$
12.
C. -64

PROBLEM ANSWER
13.
A. 18

