## Problem 1

This practice exam is provided as a way for students to practice solving the exam under a time limit. We suggest that you set a timer for 120 minutes, put away your notes and calculator, and solve the exam in one sitting.

The real Final Exam will have 20 questions with each question worth 5 points. The real exam is multiple choice graded all-or-nothing. (In this practice exam, ignore any prompts to show your work. While showing your work is good practice, on the exam it will not be graded)

## Problem 2

A line $l$ passes through the point $(-1,1,2)$ and is perpendicular to the plane $x-2 y+2 z=8$. At what point does this line intersect with the $y z$-plane?

To receive the full 5 points, you must show all your work on this problem.
A. $(0,4,-1)$
B. $(0,4,6)$
C. $(0,-1,4)$
D. $(0,1,4)$
E. $(0,3,1)$

## Problem 3

Identify the surface $2 x^{2}+3 z^{2}=4 x+2 y^{2}$ through completing the square.
A. Cone
B. Hyperboloid of two sheets
C. Ellipsoid
D. Parabolic hyperboloid
E. Hyperboloid of one sheet

## Problem 4

Let ( $a, b, c$ ) be the point of intersection of the space curve $\vec{r}(t)=\left\langle\sqrt{ } 2 t, t^{2}+1,1-4 t\right\rangle$ with the surface $x^{2}+2 y-z=0$. What is the value of $a^{2}+2 b$ ?

To receive the full 5 points, you must show all your work on this problem.
A. 3
B. 4
C. 5
D. 7
E. 6

## Problem 5

Calculate the arc length of $r(t)=\langle 3 \sin (2 t), 4,3 \cos (2 t)\rangle$ for $0 \leq t \leq \frac{\pi}{3}$.
A. $2 \pi$
B. $\pi$
C. $\frac{5 \pi}{3}$
D. $-\frac{\pi}{3}$
E. $6 \pi$

## Problem 6

The level curves of $f(x, y)=\sqrt{x^{2}+4 y^{2}+4}-x$ are
A. sometimes lines and sometimes ellipses
B. parabolas
C. hyperbolas
D. ellipses
E. circles

## Problem 7

If $f(x, y)=x \sin \left(x y^{2}\right)$, compute $f_{y x}(\pi, 1)$.
To receive the full 5 points, you must show all your work on this problem.
A. $-4 \pi$
B. $-8 \pi$
C. $-\pi$
D. $-6 \pi$
E. $-2 \pi$

## Problem 8

Find the directional derivative of $f(x, y)=x e^{y^{2}}+e^{x+y}$ at the point $(0,0)$ in the direction of the vector $3 \vec{i}-4 \vec{j}$.

To receive the full 5 points, you must show all your work on this problem.
A. 0
B. $-6 / 5$
C. $2 / 5$
D. $-2 / 5$
E. 6/5

## Problem 9

The shortest distance from $(1,1,0)$ to the plane $x+y+z=1$ is
A. $\sqrt{ } \underline{3}$
B. $\frac{\sqrt{ } 3}{4}$
C. 3
D. $\frac{\sqrt{ } 3}{2}$
E. $\frac{\sqrt{ } 3}{3}$

## Problem 10

The extreme values of $f(x, y, z)=3 x+2 y+6 z$ with constraint $x^{2}+y^{2}+z^{2}=4$ are.
To receive the full 5 points, you must show all your work on this problem.
A. The maximum of $f$ is 28 and the minimum of $f$ is -28
B. The maximum of $f$ is 7 and the minimum of $f$ is -7
C. The maximum of $f$ is 14 and the minimum of $f$ is -14
D. The maximum of $f$ is 14 and the minimum of $f$ is -7
E. The maximum of $f$ is 7 and the minimum of $f$ is -14

## Problem 11

Compute the double integral $\iint_{R} \cos (x+y) d A$, where R is the rectangle $[0, \pi] \times[0, \pi]$.
A. -2
B. -4
C. 0
D. 2
E. 4

## Problem 12

Which of the following integrals represents the volume of the solid in the first octant that is bounded on the side by the surface $x^{2}+y^{2}=4$ and on the top by the surface $x^{2}+y^{2}+z=4$ ?
A. $\int_{0}^{2} \int_{0}^{2} \int_{0}^{4-x^{2}-y^{2}} d z d y d x$
B. $\int_{0}^{2} \int_{0}^{\sqrt{ } 4-x^{2}} \int_{0}^{4-x^{2}-y^{2}} d z d y d x$
C. $\int_{0}^{2} \int_{0}^{\sqrt{ } 4-x^{2}} \int_{0}^{x^{2}+y^{2}} d z d y d x$
D. $\int_{0}^{4} \int_{0}^{4} \int_{0}^{4-x^{2}-y^{2}} d z d y d x$
E. $\int_{0}^{2} \int_{0}^{\sqrt{ } 4-x^{2}} \int_{0}^{4-z} d z d y d x$

## Problem 13

Compute $\iiint_{E} z d V$, where $E$ is bounded by the sphere $x^{2}+y^{2}+z^{2}=1$ and the coordinate planes in the first octant.
A. $\frac{3 \pi}{8}$
B. $\frac{\pi}{12}$
C. $\frac{\pi}{8}$
D. $\frac{\pi}{6}$
E. $\frac{\pi}{16}$

## Problem 14

Let $C$ be the half circle $x^{2}+y^{2}=4$ with $x \geq 0$ then

$$
\int_{C} x d s=
$$

A. 0
B. 8
C. 4
D. 2
E. 1

## Problem 15

Compute the line integral $\int_{C} F \cdot d r$, where $F=\langle y z, x z, x y\rangle$ is conservative and the curve $C$ is parametrized by $r(t)=\left\langle t^{2}, t, t^{3}-3 t\right\rangle, 1 \leq t \leq 2$.
A. 18
B. $8 \pi$
C. 0
D. 10
E. -16

## Problem 16

Compute

$$
\int_{C}\left(e^{2 x}+y^{2}\right) d x+\left(14 x y+y^{2}\right) d y
$$

where $C$ is the boundary of the region bounded by the $y$-axis and the curve $x=y-y^{2}$ oriented counterclockwise.
A. 2
B. 1
C. 4
D. 12
E. 24

## Problem 17

Find $\operatorname{grad}(\operatorname{div}(F)) \cdot \operatorname{curl}(F)$ for $F(x, y, z)=x y \vec{i}+y z \vec{j}+x z \vec{k}$ at $(1,-1,2)$
A. 0
B. 3
C. -2
D. 1
E. -4

## Problem 18

Find the area of the part of the plane $3 x+2 y+z=6$ that is in the first octant.
A. $3 \sqrt{20}$
B. $3 \sqrt{ } 22$
C. $3 \sqrt{14}$
D. $3 \sqrt{ } 10$
E. $3 \sqrt{ } 6$

## Problem 19

The flux of the vector field $\vec{F}(x, y, z)=x \vec{i}+(x+y) \vec{j}+z \vec{k}$ across the surface of the plane $x+y+z=1$ in the first octant, oriented upward, is equal to:
A. 3/4
B. $3 / 2$
C. $4 / 3$
D. $1 / 2$
E. 2/3

## Problem 20

Use Stokes' Theorem to evaluate the integral $\int_{C} y d x+z d y+x d z$, where $C$ is the intersection of the surfaces $x^{2}+y^{2}=1$ and $x+y+z=5 . C$ is oriented counterclockwise when viewed from above.
A. $-6 \pi$
B. $-3 \pi$
C. $-9 \pi$
D. $-8 \pi$
E. $-\pi$

## Problem 21

Evaluate the flux integral $\iint_{S} \vec{F} \cdot d S$ where $F(x, y, z)=\left\langle 3 x y^{2}, x \cos (z), z^{3}\right\rangle$ and $S$ is the complete boundary surface of the solid region bounded by the cylinder $y^{2}+z^{2}=2$ and the planes $x=1$ and $x=3$. $S$ is oriented by the outward normal.
A. $12 \pi$
B. $9 \pi$
C. $14 \pi$
D. $24 \pi$
E. $18 \pi$

## Answer Key

## PROBLEM POINTS ANSWER

1. $0 \quad$ Name
2. 

5
C. $(0,-1,4)$
3.

5
E. Hyperboloid of one sheet
4.

5
A. 3
5.

5
A. $2 \pi$
6.

5
B. parabolas
7.

5
A. $-4 \pi$
8.

5
C. 2/5
9.

5
E. $\frac{\sqrt{3}}{3}$
10.

5
C. The maximum of $f$ is 14 and the minimum of $f$ is -14
11.
B. -4
12.

5
B. $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{4-x^{2}-y^{2}} d z d y d x$

## PROBLEM POINTS ANSWER

13. 5
E. $\frac{\pi}{16}$
14. 

5
B. 8
15.

5
A. 18
16.

5
B. 1
17.

5
C. -2
18.
19.

5
E. 2/3
20.

5
B. $-3 \pi$
21.

5
A. $12 \pi$

