This practice exam is provided as a way for students to practice solving the exam under a time limit. We suggest that you set a timer for 120 minutes, put away your notes and calculator, and solve the exam in one sitting.

The real Final Exam will have 20 questions with each question worth 5 points. The real exam is multiple choice graded all-or-nothing. (In this practice exam, ignore any prompts to show your work. While showing your work is good practice, on the exam it will not be graded)

Problem 2

A line *l* passes through the point (-1,1,2) and is perpendicular to the plane x - 2y + 2z = 8. At what point does this line intersect with the *yz*-plane?

To receive the full 5 points, you must show all your work on this problem.

A. (0, 4, -1) B. (0, 4, 6) C. (0, -1, 4) D. (0, 1, 4) E. (0, 3, 1)

Problem 3

Identify the surface $2x^2 + 3z^2 = 4x + 2y^2$ through completing the square.

- A. Cone
- B. Hyperboloid of two sheets
- C. Ellipsoid
- **D.** Parabolic hyperboloid
- E. Hyperboloid of one sheet

(0 points)

(5 points)

(5 points)

Let (a,b,c) be the point of intersection of the space curve $\vec{r(t)} = \langle \sqrt{2t}, t^2 + 1, 1 - 4t \rangle$ with the surface $x^2 + 2y - z = 0$. What is the value of $a^2 + 2b$?

To receive the full 5 points, you must show all your work on this problem.

- **A.** 3
- **B.** 4
- **C**. 5
- **D**. 7
- **E.** 6

Problem 5

Calculate the arc length of $r(t) = \langle 3\sin(2t), 4, 3\cos(2t) \rangle$ for $0 \le t \le \frac{\pi}{3}$.

A. 2π B. π C. $\frac{5\pi}{3}$ D. $-\frac{\pi}{3}$ E. 6π

Problem 6

The level curves of $f(x,y)=\sqrt{x^2+4y^2+4-x}$ are

A. sometimes lines and sometimes ellipses

- **B.** parabolas
- C. hyperbolas
- D. ellipses
- E. circles

Problem 7

If $f(x,y) = x \sin(xy^2)$, compute $f_{yx}(\pi,1)$.

To receive the full 5 points, you must show all your work on this problem.

A. -4π

B. -8π

 $C. -\pi$

D. -6π

 $\mathrm{E.}-2\pi$

(5 points)

(5 points)

(5 points)

Find the directional derivative of $f(x,y) = xe^{y^2} + e^{x+y}$ at the point (0,0) in the direction of the vector $3\vec{i} - 4\vec{j}$.

To receive the full 5 points, you must show all your work on this problem.

- **A.** 0
- **B.** -6/5
- **C.** 2/5
- **D.** -2/5
- **E.** 6/5

Problem 9

(5 points)

The shortest distance from (1,1,0) to the plane x + y + z = 1 is

A. $\sqrt{3}$ B. $\frac{\sqrt{3}}{4}$ C. 3 D. $\frac{\sqrt{3}}{2}$ E. $\frac{\sqrt{3}}{3}$

Problem 10

(5 points)

The extreme values of f(x,y,z) = 3x + 2y + 6z with constraint $x^2 + y^2 + z^2 = 4$ are.

To receive the full 5 points, you must show all your work on this problem.

- A. The maximum of f is 28 and the minimum of f is -28
- B. The maximum of f is 7 and the minimum of f is -7
- C. The maximum of f is 14 and the minimum of f is -14
- D. The maximum of f is 14 and the minimum of f is -7
- E. The maximum of f is 7 and the minimum of f is -14

(5 points)

Compute the double integral $\iint\limits_R \cos(x+y) \, dA$, where R is the rectangle $[0,\pi] imes [0,\pi]$.

A. -2

- **B.** -4
- **C.** 0
- **D**. 2
- **E.** 4

Problem 12

(5 points)

Which of the following integrals represents the volume of the solid in the first octant

that is bounded on the side by the surface $x^2 + y^2 = 4$ and on the top by the surface $x^2 + y^2 + z = 4$?

Problem 13

(5 points)

Compute $\iint \int_E z dV$, where *E* is bounded by the sphere $x^2 + y^2 + z^2 = 1$ and the coordinate planes in the first octant.

A. $\frac{3\pi}{8}$ B. $\frac{\pi}{12}$ C. $\frac{\pi}{8}$ D. $\frac{\pi}{6}$ E. $\frac{\pi}{16}$

Let C be the half circle $x^2+y^2=4$ with $x\geq 0$ then

C. 4 **D**. 2

A. 0 **B.** 8

E. 1

Problem 15

Compute the line integral $\int_C F \cdot dr$, where $F = \langle yz, xz, xy \rangle$ is conservative and the curve C is parametrized by $r(t) = \langle t^2, t, t^3 - 3t \rangle$, $1 \le t \le 2$. **A.** 18 **B**. 8π **C**. 0 **D.** 10 **E.** -16

Problem 16

Compute

$$\int_{-C}ig(e^{2x}+y^2ig)dx+ig(14xy+y^2ig)dy$$
,

where C is the boundary of the region bounded by the y-axis and the curve $x = y - y^2$ oriented counterclockwise.

A. 2 **B.** 1 **C**. 4 **D.** 12

E. 24

(5 points)

(5 points)

(5 points)

 $\int_{C} x ds =$

Find grad(div(F)) ·curl(F) for $F(x,y,z) = xy\vec{i} + yz\vec{j} + xz\vec{k}$ at (1,-1,2) A. 0 B. 3 C. -2 D. 1 E. -4

Problem 18

(5 points)

Find the area of the part of the plane 3x + 2y + z = 6 that is in the first octant.

A. $3\sqrt{20}$ B. $3\sqrt{22}$ C. $3\sqrt{14}$ D. $3\sqrt{10}$ E. $3\sqrt{6}$

Problem 19

The flux of the vector field $\vec{F}(x,y,z) = x\vec{i} + (x+y)\vec{j} + z\vec{k}$ across the surface of the plane x + y + z = 1 in the first octant, oriented upward, is equal to:

- **A.** 3/4
- **B.** 3/2
- **C.** 4/3
- **D.** 1/2
- **E.** 2/3

Problem 20

(5 points)

(5 points)

Use Stokes' Theorem to evaluate the integral $\int_C y \, dx + z \, dy + x \, dz$, where C is the intersection of the surfaces $x^2 + y^2 = 1$ and x + y + z = 5. C is oriented counterclockwise when viewed from above.

A. -6π

- B. -3π
- $C. -9\pi$
- D. -8π
- $\mathsf{E.} \pi$

Evaluate the flux integral $\iint_{S} \vec{F} \cdot dS$ where $F(x,y,z) = \langle 3xy^2, x\cos(z), z^3 \rangle$ and S is the complete boundary surface of the solid region bounded by the cylinder $y^2 + z^2 = 2$ and the planes x = 1 and x = 3. S is oriented by the outward normal.

- **A.** 12π
- $\mathbf{B.}\,9\pi$
- $\mathsf{C.}~14\pi$
- D. 24π
- E. 18π

Answer Key

PROBLEM	POINTS	ANSWER
1.	0	Name
2.	5	C. (0, -1, 4)
3.	5	E. Hyperboloid of one sheet
4.	5	A. 3
5.	5	Α. 2π
6.	5	B. parabolas
7.	5	A. -4π
8.	5	C. 2/5
9.	5	$E.\ \frac{\sqrt{3}}{3}$
10.	5	C. The maximum of f is 14 and the minimum of f is -14
11.	5	B4
12.	5	$B. \int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{4-x^{2}-y^{2}} dz dy dx$

13.5 $E. \frac{\pi}{16}$ 14.5 $B.8$ 15.5 $A.18$ 16.5 $B.1$ 17.5 $C2$ 18.5 $c.3\sqrt{14}$ 19.5 $E.2/3$ 20.5 $B3\pi$ 21.5 $A.12\pi$	PROBLEM	POINTS	ANSWER
14.5 $B.8$ 15.5 $A.18$ 16.5 $B.1$ 17.5 $C2$ 18.5 $C.3\sqrt{14}$ 19.5 $E.2/3$ 20.5 $B3\pi$ 21.5 $A.12\pi$	13.	5	E. $\frac{\pi}{16}$
15.5 $A. 18$ 16.5 $B. 1$ 17.5 $C2$ 18.5 $C. 3\sqrt{14}$ 19.5 $E. 2/3$ 20.5 $B3\pi$ 21.5 $A. 12\pi$	14.	5	B. 8
16.5B. 117.5C218.5 $C. 3\sqrt{14}$ 19.5 $E. 2/3$ 20.5 $B3\pi$ 21.5 $A. 12\pi$	15.	5	A. 18
17.5C218.5 $C. 3\sqrt{14}$ 19.5 $E. 2/3$ 20.5 $B3\pi$ 21.5 $A. 12\pi$	16.	5	B. 1
18. 5 $C. 3\sqrt{14}$ 19. 5 $E. 2/3$ 20. 5 $B3\pi$ 21. 5 $A. 12\pi$	17.	5	C 2
19. 5 E. 2/3 20. 5 B. -3π 21. 5 A. 12π	18.	5	$C. 3\sqrt{14}$
20. 5 B. -3π 21. 5 A. 12π	19.	5	E. 2/3
21. 5 A. 12π	20.	5	B. -3π
	21.	5	Α. 12π