Problem 1

This practice exam is provided as a way for students to practice solving the exam under a time limit. We suggest that you set a timer for 120 minutes, put away your notes and calculator, and solve the exam in one sitting.

The real Final Exam will have 20 questions with each question worth 5 points. The real exam is multiple choice graded all-or-nothing. (In this practice exam, ignore any prompts to show your work. While showing your work is good practice, on the exam it will not be graded)

Problem 2

Find an equation of the plane that contains the point $(1,2,-3)$ and the line with symmetric equations $x-2=y-1=\frac{z+2}{2}$.
To receive the full 5 points, you must show all your work on this problem.
A. $4 x-2 y-3 z=9$
B. $3 x+y-2 z=11$
C. $2 x-y+z=-3$
D. $x+y-2 z=9$
E. $5 x+y+z=4$

Problem 3

Identify the surface defined by the equation $x^{2}+y^{2}+2 z-z^{2}=0$.
A. Hyperboloid of two sheets
B. Paraboloid
C. Hyperboloid of one sheet
D. Ellipsoid
E. Ellipse

Problem 4

A particle has position $\vec{r}(t)$ with acceleration $\vec{a}(t)=t \vec{i}+3 t^{2} \vec{k}$ and the initial conditions $\vec{v}(0)=\vec{i}+\vec{j}+\vec{k}$ and $\vec{r}(0)=\overrightarrow{0}$. Then $\vec{r}(1)=$

To receive the full 5 points, you must show all your work on this problem.
A. $\frac{1}{6} \vec{i}+\frac{1}{4} \vec{k}$
B. $\vec{i}+\vec{j}+\vec{k}$
C. $5 \vec{i}+7 \vec{j}+\vec{k}$
D. $\vec{i}+\frac{5}{4} \vec{k}$
E. $\frac{7}{6} \vec{i}+\vec{j}+\frac{5}{4} \vec{k}$

Problem 5

Find the length of the curve $r(t)=\langle\sin t-t \cos t, \cos t+t \sin t\rangle, 0 \leq t \leq 2 \pi$.
A. 2π
B. $2 \pi^{2}$
C. $\frac{\pi^{2}}{2}$
D. $4 \pi^{2}$
E. π^{2}

Problem 6

The level curves of $f(x, y)=\sqrt{x^{2}}+y^{2}+1+x$ are
A. hyperbolas
B. parabolas
C. ellipses
D. sometimes lines sometimes ellipses
E. circles

Problem 7

Suppose that z is defined as a function of x and y by the equation
$\cos (x y z)=x+3 y+2 z$.
Use implicit differentiation to find the value of $\frac{\partial z}{\partial y}(0,1)$.
A. $-2 / 3$
B. $-1 / 2$
C. $-3 / 5$
D. $-3 / 2$
E. 1/3

Problem 8

Find the maximum rate of change of $f(x, y)=\sqrt{7-x^{2}-y^{2}}$ at the point $(-2,1)$.
To receive the full 5 points, you must show all your work on this problem.
A. $\frac{3}{\sqrt{2}}$
B. $\frac{5}{\sqrt{2}}$
C. $\sqrt{ } 8$
D. $\frac{\sqrt{ } 10}{2}$
E. 1/4

Problem 9

The function $f(x, y)=6 x^{2}+3 y^{2}-16$ attains its local minimum at:
A. $(6,0)$
B. $(6,-3)$
C. $(3,0)$
D. $(6,3)$
E. $(0,0)$

Problem 10

Find the minimum value of $f(x, y)=2 x+3 y+2$ given that $2 x^{2}+5 x y+4 y^{2}=28$
To receive the full 5 points, you must show all your work on this problem.
A. -6
B. -1
C. -2
D. -8
E. -3

Problem 11

Reverse the order of integration and evaluate the double integral: $\int_{0}^{1} \int_{x^{2}}^{1} 6 \sqrt{y} \cos \left(y^{2}\right) d y d x$
A. $3 \cos (1)$
B. $2 \sin (1)$
C. $2 \cos (1)-2$
D. $3 \sin (1)$
E. $\sin (1)$

Problem 12

Evaluate the triple integral $\iiint_{V} 2 z d V$, where V is bounded by $z=2-x^{2}-y^{2}$ and $z=1$.
A. π
B. $\frac{2 \pi}{3}$
C. $1+\frac{2 \pi}{3}$
D. $\frac{4 \pi}{3}$
E. $1+\frac{4 \pi}{3}$

Problem 13

Convert the integral to spherical coordinates and compute it:

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{8-x^{2}-y^{2}}} 3 d z d y d x
$$

A. $2(\sqrt{2}-1) \pi$
B. $10(\sqrt{2}-1) \pi$
C. $12(\sqrt{2}-1) \pi$
D. $8(\sqrt{2}-1) \pi$
E. $16(\sqrt{2}-1) \pi$

Problem 14

Let C be the curve $\mathbf{r}(\mathrm{t})=<\cos t, \sin t, t>, t \in\left[0, \frac{\pi}{2}\right]$ and $f(x, y, z)=x y$ then

$$
\int_{C} f(x, y, z) d s=
$$

A. $1 / 2$
B. 0
C. $\sqrt{2}$
D. 1
E. $\frac{1}{\sqrt{2}}$

Problem 15

A particle is traveling on the path $y=x$ from $(0,0)$ to $(1,1)$. For which of the following force vector fields is the work done equal to 0 ?
A.

B.

According to Green's Theorem, which of the following line integrals is NOT equal to the area of the region enclosed by a simple curve C ?
A. $\frac{1}{2} \int_{C}(-y d x+x d y)$
B. $\frac{1}{5} \int_{C}(4 y d x-x d y)$
C. $\frac{1}{3} \int_{C}(y d x+4 x d y)$
D. $\int_{C}-y d x$
E. $\int_{C} x d y$

Problem 17

Find $\operatorname{grad}(\operatorname{div}(F)) \cdot \operatorname{curl}(F)$ for $F(x, y, z)=x y \vec{i}+y z \vec{j}+x z \vec{k}$ at $(1,-1,2)$
A. -4
B. 0
C. 3
D. 1
E. -2

Problem 18

Find the surface area of the parametric surface

$$
r(u, v)=\langle 2 u+3 v, 3 u+v, 2\rangle, \quad 0 \leq u \leq 2, \quad 0 \leq v \leq 1 .
$$

A. 4
B. 14
C. 12
D. $3 \sqrt{ } 2$
E. $4 \sqrt{ } 2$

Problem 19

Consider $F=\frac{r}{|r|^{3}}$ where $r=\langle x, y, z\rangle$ and $|r|=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}$. Which one of the following is true.
(i) $\int_{C} F \cdot d r$ is independent of path.
(ii) $\iint_{S} F \cdot n d S=0$ for any closed surface S that encloses the origin.
(iii) $d i v(F)=0$
A. only (ii) and (iii)
B. All of the above
C. None of the above
D. only (i) and (iii)
E. only (i) and (ii)

Problem 20

Let $F=(y+z \cos (x)) i+(-x+z \sin (y)) j+\left(x y e^{z}\right) k$, compute

$$
\iint_{S}(\nabla \times F) \cdot n d S
$$

Where S is the part of the graph of $z=f(x, y)=e^{x}\left(x^{2}+y^{2}-36\right)$ below the xy-plane with downward pointing normal.
A. -36π
B. 72π
C. 0
D. 36π
E. -72π

Compute

$$
\iint_{S} F \cdot n d S
$$

the net outward flux of the vector field $F=\langle x+y, y-z, x y+z\rangle$ across the surface S, which is the boundary of the solid bounded by $z=0, y=0, y+z=2$, and (correction) $z=1-x^{2}$.
A. $-16 / 5$
B. $-32 / 15$
C. $32 / 5$
D. $-32 / 5$
E. $32 / 15$

Answer Key

PROBLEM POINTS ANSWER

1. $0 \quad$ Name
2.

5
B. $3 x+y-2 z=11$
3.

5
A. Hyperboloid of two sheets
4.

5
E. $\frac{7}{6} \vec{i}+\vec{j}+\frac{5}{4} \vec{k}$
5.
B. $2 \pi^{2}$
6.

5
B. parabolas
7.

5
D. $-3 / 2$
8.
D. $\frac{\sqrt{10}}{2}$
9.

5
E. $(0,0)$
10.

5
A. -6
11.

5
D. $3 \sin (1)$
12.

5
D. $\frac{4 \pi}{3}$
13. 5
E. $16(\sqrt{2}-1) \pi$
14.

5
E. $\frac{1}{\sqrt{2}}$
15.

5
B.

16.

5
B. $\frac{1}{5} \int_{C}(4 y d x-x d y)$
17.

5
E. -2
18.

5
B. 14
$\begin{array}{lll}\text { 19. } 5 & \text { D. only (i) and (iii) }\end{array}$
20.

5
B. 72π
21.

5
C. $32 / 5$

