This practice exam is provided as a way for students to practice solving the exam under a time limit. We suggest that you set a timer for 120 minutes, put away your notes and calculator, and solve the exam in one sitting.

The real Final Exam will have 20 questions with each question worth 5 points. The real exam is multiple choice graded all-or-nothing. (In this practice exam, ignore any prompts to show your work. While showing your work is good practice, on the exam it will not be graded)

Problem 2

Find an equation of the plane that contains the point (1, 2, -3) and the line with symmetric equations

$$x - 2 = y - 1 = \frac{z + 2}{2}.$$

To receive the full 5 points, you must show all your work on this problem.

A. 4x - 2y - 3z = 9B. 3x + y - 2z = 11C. 2x - y + z = -3D. x + y - 2z = 9E. 5x + y + z = 4

Problem 3

Identify the surface defined by the equation $x^2 + y^2 + 2z - z^2 = 0.$

- A. Hyperboloid of two sheets
- B. Paraboloid
- C. Hyperboloid of one sheet
- D. Ellipsoid
- E. Ellipse

(0 points)

(5 points)

A particle has position $\vec{r(t)}$ with acceleration $\vec{a(t)} = t\vec{i} + 3t^2\vec{k}$ and the initial conditions $\vec{v(0)} = \vec{i} + \vec{j} + \vec{k}$ and $\vec{r(0)} = \vec{0}$. Then $\vec{r(1)} =$

To receive the full 5 points, you must show all your work on this problem.

A.
$$\frac{1}{6}\vec{i} + \frac{1}{4}\vec{k}$$

B. $\vec{i} + \vec{j} + \vec{k}$
C. $5\vec{i} + 7\vec{j} + \vec{k}$
D. $\vec{i} + \frac{5}{4}\vec{k}$
E. $\frac{7}{6}\vec{i} + \vec{j} + \frac{5}{4}\vec{k}$

Problem 5

(5 points)

Find the length of the curve $r(t) = \langle \sin t - t \cos t, \cos t + t \sin t \rangle, 0 \le t \le 2\pi$.

A. 2π B. $2\pi^2$ C. $\frac{\pi^2}{2}$ D. $4\pi^2$

E.
$$\pi^2$$

Problem 6

The level curves of $f(x,y) = \sqrt{x^2 + y^2 + 1} + x$ are

A. hyperbolas

B. parabolas

C. ellipses

- D. sometimes lines sometimes ellipses
- E. circles

(5 points)

$$\cos(xyz) = x + 3y + 2z.$$

Use implicit differentiation to find the value of $\frac{\partial z}{\partial y}$ (0,1).

- **A.** -2/3 **B.** -1/2
- **C.** -3/5
- **D.** -3/2
- **E.** 1/3

Problem 8

Find the maximum rate of change of $f(x,y)=\sqrt{7-x^2-y^2}$ at the point (-2, 1).

To receive the full 5 points, you must show all your work on this problem.

Problem 9

The function $f(x,y) = 6x^2 + 3y^2 - 16$ attains its local minimum at:

A. (6,0)

- **B.** (6,-3)
- **C.** (3,0)
- **D.** (6,3)
- **E.** (0,0)

(5 points)

To receive the full 5 points, you must show all your work on this problem.

- **A.** -6
- **B.** -1
- **C.** -2
- **D**. -8
- **E.** -3

Problem 11

(5 points)

(5 points)

Reverse the order of integration and evaluate the double integral: $\int_0^1 \int_{x^2}^1 6\sqrt{y} \cos(y^2) \, dy \, dx$

- A. 3 cos(1)
- **B.** $2\sin(1)$
- C. $2\cos(1) 2$
- D. $3\sin(1)$
- **E**. sin(1)

Problem 12

Evaluate the triple integral $\iint \int_V 2z dV,$ where V is bounded by $z=2-x^2-y^2$ and z=1.

A. π B. $\frac{2\pi}{3}$ C. $1 + \frac{2\pi}{3}$ D. $\frac{4\pi}{3}$ E. $1 + \frac{4\pi}{3}$

(5 points)

Problem 13

Convert the integral to spherical coordinates and compute it:

$$\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{8-x^{2}-y^{2}}} 3dzdy dx$$

A. $2\left(\sqrt{2}-1\right)\pi$
B. $10\left(\sqrt{2}-1\right)\pi$
C. $12\left(\sqrt{2}-1\right)\pi$
D. $8\left(\sqrt{2}-1\right)\pi$
E. $16\left(\sqrt{2}-1\right)\pi$

Problem 14

(5 points)

Let C be the curve $\mathbf{r}(\mathsf{t}){=}{<}\cos t,\sin t,t{>},t\in [0,rac{\pi}{2}]$ and f(x,y,z)=xy then

$$\int _{C} f(x,y,z) ds =$$

A. 1/2B. 0 C. $\sqrt{2}$ D. 1 E. $\frac{1}{\sqrt{2}}$

A particle is traveling on the path y = x from (0,0) to (1,1). For which of the following force vector fields is the work done equal to 0?

According to Green's Theorem, which of the following line integrals is **NOT** equal to the area of the region enclosed by a simple curve *C*?

A.
$$\frac{1}{2} \int_{C} (-y \, dx + x \, dy)$$

B.
$$\frac{1}{5} \int_{C} (4y \, dx - x \, dy)$$

C.
$$\frac{1}{3} \int_{C} (y \, dx + 4x \, dy)$$

D.
$$\int_{C} -y \, dx$$

E.
$$\int_{C} x dy$$

Problem 17

Find grad(div(F)) \cdot curl(F) for $F(x,y,z) = xy\vec{i} + yz\vec{j} + xz\vec{k}$ at (1,-1,2)

A. -4

B. 0

C. 3

D. 1

E. -2

Problem 18

Find the surface area of the parametric surface

 $r(u,v) = \langle 2u + 3v, 3u + v, 2 \rangle, \quad 0 \le u \le 2, \quad 0 \le v \le 1.$ A. 4 B. 14 C. 12 D. $3\sqrt{2}$ E. $4\sqrt{2}$ (5 points)

(5 points)

(5 points)

Consider
$$F = \frac{r}{|r|^3}$$
 where $r = \langle x, y, z \rangle$ and $|r| = (x^2 + y^2 + z^2)^{\frac{1}{2}}$. Which one of the following is true.
(i) $\int_C F \cdot dr$ is independent of path.
(ii) $\int \int_S F \cdot n dS = 0$ for any closed surface S that encloses the origin.
(iii) $div(F) = 0$
A. only (ii) and (iii)
B. All of the above
C. None of the above
D. only (i) and (iii)
E. only (i) and (iii)

Problem 20

Let $F = (y + z cos(x))i + (-x + z sin(y))j + (xye^z)k$, compute

$$\iint_{S} (
abla imes F) \cdot ndS$$

Where *S* is the part of the graph of $z = f(x,y) = e^x (x^2 + y^2 - 36)$ below the xy-plane with downward pointing normal.

A. -36π

B. 72π

C. 0

D. 36π

 $\mathsf{E.}-72\pi$

Problem 21 (Corrected)

Compute

 $\iint\nolimits_S F \cdot ndS$

the net outward flux of the vector field $F = \langle x + y, y - z, xy + z \rangle$ across the surface S, which is the boundary of the solid bounded by z = 0, y = 0, y + z = 2, and (correction) $z = 1 - x^2$.

A. -16/5

B. -32/15

C. 32/5

D. -32/5

E. 32/15

Answer Key

PROBLEM	POINTS	ANSWER
1.	0	Name
2.	5	B. $3x + y - 2z = 11$
3.	5	A. Hyperboloid of two sheets
4.	5	$E.\ \frac{7}{6}\vec{i}+\vec{j}+\frac{5}{4}\vec{k}$
5.	5	B. $2\pi^2$
6.	5	B. parabolas
7.	5	D3/2
8.	5	D. $\frac{\sqrt{10}}{2}$
9.	5	E. (0,0)
10.	5	A. -6
11.	5	D. 3 sin(1)
12.	5	D. $\frac{4\pi}{3}$

PROBLEM	POINTS	ANSWER
13.	5	E. $16\left(\sqrt{2}-1 ight)\pi$
14.	5	$E. \ \frac{1}{\sqrt{2}}$
15.	5	B. 0.4 0.2 0 -0.2 0 0.2 0.4 0.6 0.8 1
16.	5	$B.\frac{1}{5}\int_C (4ydx-xdy)$
17.	5	E. -2
18.	5	B. 14
19.	5	D. only (i) and (iii)
20.	5	B. 72π
21.	5	C . 32/5