MA 26100-FALL 2023 DR. HOOD

For each of the following integrals, identify whether its integrand is a scalar or a vector. Integral $\vec{F} = \langle 2xy, 5e^{x} \rangle$ $\vec{J_r} = \langle d_2, dy \rangle$ a) $\int_C 2xy \, dx + 5e^x \, dy \rightarrow Vector$ b) $\oint_C z^2 dS$ Scalar c) $\iint_{S} (x^{2} + y^{2} + z^{2}) dS$ scalar d) $\iint_{S} \vec{F} \cdot \vec{n} \, dS$ where $\vec{F}(x, y, z) = \langle 3xy^2, x \cos(z), z^3 \rangle \, \forall \ell \, c \, d\sigma$ e) $\int_{C} \vec{F} \cdot d\vec{r}$ where $\vec{F}(x, y, z) = \langle y \sin(x), z + 3, x \cos(z) \rangle$ vector f) $\int_{C} \vec{\nabla} f \cdot d\vec{r}$ where $f(x, y, z) = \cos(xyz)$ vector ₹f = F vector field

ANNOUNCEMENTS

• Extra Office Hours:

-Thursday Dec 7 at 3:30 - 4:30pm in MATH 431

- What topics should we cover on Friday?
 - -Poll: <u>https://purdue.ca1.qualtrics.com/jfe/form/SV_8ko6p4fwSwyPxAi</u>

ANNOUNCEMENTS

- Final Exam is Mon Dec 11 at 8:00am- 10:00am
 - Note: in the morning!

• Please fill out course evaluations:

https://purdue.evaluationkit.com/MyEval/Login.aspx

FINAL EXAM SEATING CHART

- New seating arrangements for the Final Exam:
 - 23 TAs in ELLT
 - 1 TA in RHPH (Howen Chuah)

MA 26100 FINAL Mon., Dec. 11,2023 8:00-10:00 a.m. ELLT HALL 116 FIRST BALCONY

105

(Fall 2017 Final Exam #11) $a = 2 - \chi - a \gamma$ Find the area of the plane $x + 2y + 2z \neq 2$ that lies in the first octant. paramaterize S $F(X,Y) = \langle X, Y, 1 - \frac{x}{2} - \frac{y}{2} \rangle$ *a*) 3 tx= <1,0,=) *b*) $\frac{\sqrt{5}}{2}$ ty = < 0, 1, -(7)[tx×ty]=K=,1,1>]=√(=)+12=-C) $\frac{3}{2}$ $d)\frac{3}{4}$ $\iint_{S} 1 \cdot dS = \iint_{Z} \frac{3}{2} dA = \frac{3}{2} \operatorname{area}(D) \\ = \frac{3}{2} \cdot \frac{1}{2} \cdot 2 \cdot 1 = \iint_{Z} \frac{3}{2}$ *e*) $\frac{\sqrt{5}}{1}$

Which Theorem should you use for the problem below (if any)? F is pretty complicated Let $\mathbf{F} = (y + z\cos(x))\mathbf{i} + (-x + z\sin(y))\mathbf{j} + (xye^z)\mathbf{k}$, compute $\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS,$ where S is the part of the graph of $z = f(x, y) = e^x (x^2 + y^2 - 36)$ below the xy-plane open surface, difficult to parameterize with downward pointing normal. a) Fundamental Theorem of Line Integrals $\iint (\nabla x F) \cdot \nabla dS = \oint F \cdot dF$ b) Green's Theorem

> @ $z=0 = e^{1}(x^{2}+y^{2}-36)$ $x^{2}+y^{2}=36 \leftarrow circle of radius 6$

- c) Stokes' Theorem
- d) Divergence Theorem
- None e)

PROBLEM 17: Let S be the part of paraboloid $z = x^2 + y^2$ which is below z = 4 with downward normal. Let **F** be the vector field $\langle y, x, z \rangle$. 05254 Compute the flux 2=4

 $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$ a) Eundamental Theorem of Line Integrals F= 3D = <x, y, Z) b) Green's Theorem Nerd $\vec{F} = \vec{\Im} \times \vec{H} = \vec{\varphi} \cdot \vec{H} \cdot d\vec{r}$ Stokes' Theorem Divergence Theorem None

Compute $\oint_C y^2 dx + x dy$, where the curve C is the boundary of the half-disk

$$R = \{(x, y) : x^2 + y^2 \le 9 \text{ and } x \ge 0\}$$

with clockwise orientation.

- a) Fundamental Theorem of Line Integrals
- b) Green's Theorem
- c) Stokes' Theorem
- d) Divergence Theorem
- e) None

PROBLEM 14: Let

$$\mathbf{F} = \langle y, x + e^z, y e^z + 1 \rangle$$

Calculate the line integral

 $\int_C {\bf F} \cdot d{\bf r}$ where C is the curve $r(t) = \langle t^2, t^3, \sin(t\pi) \rangle : 0 \le t \le 2$

- a) Fundamental Theorem of Line Integrals
- b) Green's Theorem
- c) Stokes' Theorem
- d) Divergence Theorem
- e) None

Compute

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS$$

the net outward flux of the vector field $\mathbf{F} = \langle x + y, y - z, xy + z \rangle$ across the surface S, which is the boundary of the solid bounded by z = 0, y = 0, y + z = 2, and $z = 1 - x^2$.

- a) Fundamental Theorem of Line Integrals
- b) Green's Theorem
- c) Stokes' Theorem
- d) Divergence Theorem
- e) None

Let S be an open surface in \mathbb{R}^3 with boundary curve C where C is a circle in the xy-plane with radius 1 and center (0, 0, 0) and is oriented counterclockwise when viewed from above. Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x, y, z)$ is such that $\operatorname{curl}(\vec{F}) = \langle \frac{1}{2}, -\frac{3}{2}, \frac{1}{4} \rangle$.

- a) Fundamental Theorem of Line Integrals
- b) Green's Theorem
- c) Stokes' Theorem
- d) Divergence Theorem
- e) None

Let S be the part of the plane y + z = 10 that lies inside the cylinder $x^2 + y^2 = 1$. Compute $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$ for $\mathbf{F}(x, y, z) = \langle x, 1 - y + e^z, y - e^z \rangle$ with S oriented by the upward normal.

- a) Fundamental Theorem of Line Integrals
- b) Green's Theorem
- c) Stokes' Theorem
- d) Divergence Theorem
- e) None