Final Exam Study Guide

MA 261 • Fall 2023
The Final Exam will be 20 multiple choice questions. It is comprehensive, covering Lessons $1-37$.
Past Exam Archive: https://www.math.purdue.edu/academic/courses/oldexams.php?course=MA26100
A breakdown of the learning objectives, with practice problems from the textbook and past exam problems is included in the table below.

\#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Practice Problems:	Past Exam Problems:
1	Review of Vectors	$\begin{aligned} & 13.1 \\ & 13.2 \\ & 13.3 \\ & 13.4 \end{aligned}$	1	- Compute vector operations - Find magnitude of a vector - Find a position vector - Find the equation of a sphere, ball, or circle - Find equations of simple planes - Compute dot products - Find angles between vectors - Calculate orthogonal projections - Compute cross products - Find areas of parallelograms and triangles - Find orthogonal vectors	Vector, scalar, magnitude, zero vector, position vector, unit vector, parallel, sphere, ball, circle, plane, dot product, orthogonal, orthogonal projection, cross product, determinant, coordinate unit vectors (i, \mathbf{j}, \mathbf{k})	$\begin{aligned} & \text { 13.1: \# 21, 23, 29, } \\ & 43,45,47 \\ & \text { 13.2: \# 31, } 37,41 \text {, } \\ & 45,71,73 \\ & \text { 13.3: \# 25, 27, 35, } \\ & 37,39,41,43,47 \text {, } \\ & 53,55,63,65 \\ & \text { 13.4: \# 13, 21, 25, } \\ & 27,29,33,43,45, \\ & 49 \end{aligned}$	Few exam questions test these concepts directly. However, you will need these concepts to complete the more difficult questions from the past exams. S18E1\#4 S18FE\#1 S16E1\#1
2	Lines \& Planes in Space	13.5	1	- Find equations of lines and line segments - Find equations of planes - Determine whether planes are parallel, intersecting, or identical - Find intersections between lines and/or planes	Parallel, intersecting, skew, orthogonal planes	$\begin{aligned} & \text { 13.5: \# 21, 23, 25, } \\ & 49,51,55,57,65, \\ & 67,69,73,75,77 \text {, } \\ & 79,81,90 \end{aligned}$	$\begin{aligned} & \text { S19E1\#1 } \\ & \text { S19E1\#2 } \\ & \text { S19FE\#1 } \\ & \text { F19E1\#1 } \\ & \text { F19FE\#1 } \\ & \text { F18E1\#1 } \\ & \text { F18FE\#1 } \end{aligned}$
$\begin{aligned} & \hline 3 \\ & 4 \end{aligned}$	Quadratic Surfaces	13.6	2	- Sketch graphs of cylinders and quadratic surfaces - Identify surfaces from equations	Trace, elliptic paraboloid, ellipsoid, cylinder, elliptic cone, hyperboloid of one sheet, hyperboloid of two sheets, hyperbolic paraboloid	$\begin{aligned} & \text { 13.6: \# 15, 17, 19, } \\ & 21,23,25,27,31, \\ & 35,37,39,43,45, \\ & 47,49,51,55,57, \\ & 59 \end{aligned}$	$\begin{aligned} & \hline \text { S19FE\#2 } \\ & \text { F19E1\#2 } \\ & \text { S18E1\#1 } \\ & \text { F18E1\#3 } \\ & \text { F18FE\#2 } \end{aligned}$

\#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Practice Problems:	Past Exam Problems:
5	Vector-Valued Functions	14.1	2	- Graph curves described by vectorvalued functions - Find domains of vector-valued functions - Find the intersection of planes and curves defined by vector-valued functions	Vector-valued function, domain, limit of a vector-valued function	$\begin{aligned} & \text { 14.1: \# 11, 12, 15, } \\ & \text { 17, 19, 21, 39, 41, } \\ & 43,45,47,49,53, \\ & 55 \end{aligned}$	S22E1\#4 S19E1\#3 F19FE\#2 F18E1\#2 F16E1\#4 S14E1\#9
6	Calculus of Vector-Valued Functions, Motion in Space	$\begin{aligned} & 14.2 \\ & 14.3 \end{aligned}$	3	- Find first derivatives of vectorvalued functions - Find tangent vectors and tangent lines for vector-valued functions - Evaluate definite integrals of vector-valued functions - Find velocity, speed, and acceleration of objects	Tangent vector, unit tangent vector, tangent line, derivative rules	$\begin{aligned} & \text { 14.2: \# 11, 13, 15, } \\ & \text { 17, 19, 21, 25, 27, } \\ & \text { 29, 35, 37, 39, 47, } \\ & 71,73,75,77,79, \\ & 81,83 \\ & \text { 14.3: \# 47, } 49 \end{aligned}$	S18E1\#2 S18E1\#3 S17E1\#3 S16E1\#5
7	Motion in Space	14.3	3	- Compare trajectories of objects - Solve applications involving 2d and 3d motion	Velocity, acceleration, trajectories	$\begin{aligned} & \text { 14.3: \# 15, 17, 19, } \\ & 29,31,47,49,57 \end{aligned}$	S19E1\#6 S19FE\#20 F19E1\#3 F19E1\#6 S18FE\#3 F18E1\#5 F18E1\#6
8	Length of Curves, Curvature	$\begin{aligned} & \hline 14.4 \\ & 14.5 \end{aligned}$	3	- Find arc lengths of vector-valued functions - Parameterize curves by arc length - Find unit tangent vectors and curvatures - Use velocity to find curvature	Arc length, curvature	$\begin{aligned} & \text { 14.4: \# 9, 11, 13, } \\ & \text { 15, 17, 19, 23, 25, } \\ & 33,35,37 \\ & \text { 14.5: \# 11, 13, 15, } \\ & 17,21,23,25 \end{aligned}$	Arc Length S19E1\#5 F19E1\#5 F19FE\#3 S18FE\#2 Curvature S19E1\#4 F19E1\#4 F18E1\#4
9	Functions of Several Variables	15.1	4	- Find domains of functions - Graph surfaces - Graph level curves of functions	Function of several variables, level curves	$\begin{aligned} & \text { 15.1: \# 15, 19, 21, } \\ & 23,27,29,31,33, \\ & 35,37,39,41,57 \end{aligned}$	$\begin{aligned} & \hline \text { S19E1\#7 } \\ & \text { S18E1\#5 } \\ & \text { F18E1\#7 } \end{aligned}$

\#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Practice Problems:	Past Exam Problems:
10	Limits and Continuity	15.2	4	- Evaluate limits of functions - Evaluate limits at boundary points - Determine where functions are continuous	Limit laws, boundary point, interior point, two-path test, continuity	$\begin{aligned} & \text { 15.2: \# 17, 19, 21, } \\ & 23,25,27,29,31, \\ & 33,39,41,49,53, \\ & 61,63,65,67,69, \\ & 71,77 \end{aligned}$	F19E1\#7 F18E1\#8 S17E1\#6
11	Partial Derivatives	15.3	4	- Find first partial derivatives - Find second partial derivatives	Partial derivative, differentiable,	$\begin{aligned} & \text { 15.3: \# 17, 19, 21, } \\ & 27,33,39,41,43, \\ & 45,47,55,57,79 \end{aligned}$	S19E1\#8 S19FE\#7 F19E1\#8 F19FE\#6 F18FE\#5
12	The Chain Rule	15.4	Practice	- Use the chain rule to find derivatives - Differentiate implicitly - Evaluate partial derivatives at specified points	Chain rule, implicit differentiation	$\begin{aligned} & \text { 15.4: \# } 15,17,19, \\ & 21 \quad 23 \quad 35 \quad 3739, \end{aligned}$	S19E1\#9 F19FE\#7 S18FE\#5 F18E1\#10
13	Directional Derivatives and the Gradient	15.5	Practice	- Compute gradients and/or directional derivatives - Find directions or paths of change - Compute slopes of lines tangent to level curves	Gradient, directional derivative, directions of change, level curves, steepest descent	$\begin{aligned} & \text { 15.5: \#17, 19, 25, } \\ & 27,29,31,33,35, \\ & 61,63,65,67 \end{aligned}$	$\begin{aligned} & \text { S19E1\#10 } \\ & \text { S19FE\#8 } \\ & \text { F19E1\#9 } \\ & \text { F19FE\#4 } \\ & \text { S18FE\#7 } \\ & \text { F18E1\#11 } \\ & \text { F18FE\#4 } \end{aligned}$
14	Tangent Plane and Linear Approximation	15.6	5	- Find equations of planes tangent to surfaces - Find linear approximations - Use differentials to approximate changes in functions	Tangent plane, differential, linear approximation	$\begin{aligned} & \text { 15.6: \#13, 15, 17, } \\ & 19,21,25,29,33, \\ & 35,37,53 \end{aligned}$	S19E1\#11 S19FE\#5 F19FE\#5 S18FE\#6 F18E1\#9 F18FE\#3
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	Maximum and Minimum Problems	15.7	5	- Find and analyze critical points for functions - Find local and absolute extrema for functions	Local extrema, critical point, saddle point, second derivative test, absolute extrema	$\begin{aligned} & \text { 15.7: \#9, 11, 25, } \\ & 27,29,31,33,35, \\ & 37,39,41,47,49, \\ & 51,53,55,63,67 \end{aligned}$	S19E1\#12 S19FE\#9 F19E1\#10 F19E1\#11 F19FE\#8 S18FE\#9 F18FE\#7 F18E1\#12 F18E2\#1

\#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Practice Problems:	Past Exam Problems:
17	Lagrange Multipliers	15.8	6	- Use Lagrange multipliers to find extreme values	Lagrange multiplier	$\begin{aligned} & \text { 15.8: \#7, 9, 11, 13, } \\ & \text { 15, 17, 21, 23, 25, } \\ & 3541 \end{aligned}$	S19E2\#1 F19E2\#1 F18FE\#6 F18E2\#2
18	Double Integrals in Rectangular Regions	16.1	6	- Evaluate iterated integrals - Evaluate double integrals over rectangular regions - Compute average values of functions over plane regions	Double integral, average value	$\begin{aligned} & \text { 16.1: \#5, 27, 29, } \\ & 31,33,35,45,47 \end{aligned}$	$\begin{aligned} & \text { F19E2\#2 } \\ & \text { S18E2\#2 } \\ & \text { F18E2\#3 } \end{aligned}$
19	Double Integrals over General Regions	16.2	6	- Evaluate double integrals over general regions - Change the order of integration	Order of integration	$\begin{aligned} & \text { 16.2: } \# 43,47,51, \\ & 55,57,59,61,63, \\ & 65,67 \end{aligned}$	S19E2\#2 S19E2\#4 S19FE\#10 F19E2\#3 F19FE\#9 F18E2\#4
20	Double Integrals in Polar Coordinates	16.3	6	- Find volumes of solids using polar coordinates - Evaluate double integrals using polar coordinates	Polar coordinates	$\begin{aligned} & \text { 16.3: \#15, 17, 21, } \\ & 23,25,27,29,31, \\ & 33,41,51,55 \end{aligned}$	S19E2\#3 S19FE\#11 F18FE\#8 F18E2\#5
21	Triple Integrals	16.4	7	- Find volumes of solids using triple integrals - Evaluate triple integrals - Change the order of integration	Triple integrals	16.4: \#15, 17, 19, 21, 25, 31, 37, 39, $41,45,47,49,55$	S19E2\#5 S19FE\#12 F19E2\#4 F18FE\#9 F18E2\#7
$\begin{aligned} & 22 \\ & 23 \end{aligned}$	Triple Integrals in Cylindrical and Spherical Coordinates	16.5	7	- Evaluate triple integrals in cylindrical and spherical coordinates	Cylindrical coordinates, spherical coordinates	16.5: \#15, 17, 19, 21, 25, 29, 31, 33, 41, 43, 45, 47, 49, $51,53,55$	Cylindrical S19E2\#6 S19FE\#13 F19E2\#5 F19FE\#10 S18FE\#8 F18E2\#9 F18E2\#8 Spherical S19E2\#7 S19FE\#14

\#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Practice Problems:	Past Exam Problems:
							F19E2\#6 F19E2\#7 F18E2\#10 F18FE\#10 F18FE\#11
24	Integrals for Mass Calculation	16.6	Practice	- Find centers of mass of 2D and 3D objects - Calculate the mass of variable density solids	Center of mass, variable density	$\begin{aligned} & \text { 16.6: \#21, 23, 25, } \\ & 29,31,33,35,37, \\ & 39 \end{aligned}$	$\begin{aligned} & \text { F19E2\#8 } \\ & \text { S18FE\#10 } \\ & \text { F18E2\#6 } \end{aligned}$
25	Vector Fields	17.1	Practice	- Graph vector fields - Find gradient fields for a given potential function	Vector field, radial vector field, potential function, equipotential curves, flow curves, streamlines.	$\begin{aligned} & \text { 17.1: \#11, } 13,15, \\ & 24,37,39,41,43, \\ & 47,53 \end{aligned}$	S19E2\#8 F19E2\#9 F18E2\#11 F18E2\#12
$\begin{aligned} & 26 \\ & 27 \end{aligned}$	Line Integrals of Functions and Vector Fields	17.2	8	- Evaluate line integrals - Find the work required to move an object on an oriented curve - Find the circulation and flux of a vector field on a plane curve	Line integral, work, circulation, flux	$\begin{aligned} & \text { 17.2: \#17, 19, 21, } \\ & 23,25,27,29,31, \\ & 33,41,43,45,49, \\ & 51,53,57 \end{aligned}$	Scalar: S19E2\#10 F19E2\#10 F19E2\#11 F19FE\#11 Vector: S19E2\#9 S19FE\#15 S18FE\#12 F18FE\#12
28	Conservative Vector Fields \& the Fundamental Theorem of Line Integrals	17.3	8	- Determine whether a vector field is conservative and find potential functions - Evaluate line integrals - Compute the work done in force fields	Conservative vector field, potential function, Fundamental Theorem for Line Integrals, independent of path	```17.3: #17, 19, 23, 25, 35, 37, 39, 41, 43,53,55, 57, 59, 61```	S19FE\#3 F19FE\#12 F18FE\#13
29	Green's Theorem	17.4	9	- Use a line integral to determine the area of a region - Use Green's theorem to evaluate line integrals - Find the circulation and flux across the boundary of a region	Green's Theorem, two-dimensional curl, two-dimensional divergence, stream function, Laplace's equation	$\begin{aligned} & \text { 17.4: \#21, 27, 29, } \\ & 31,33,35,37,41, \\ & 49 \end{aligned}$	S19FE\#4 F19FE\#13 F19FE\#14 S18FE\#13 F18FE\#16 F18FE\#14

\#	Lesson:	Sec:	Quiz:	You should be able to:	You should know:	Practice Problems:	Past Exam Problems:
30	Divergence \& Curl	17.5	9	- Find the divergence of vector fields - Find the curl of vector fields	Divergence, Curl, source-free, irrotational	$\begin{aligned} & \text { 17.5: \#13, 15, 17, } \\ & 21,25,27,29,31, \\ & 33,39,41 \end{aligned}$	S19FE\#6 F19FE\#15 S18FE\#14 F18FE\#15
$\begin{aligned} & 31 \\ & 32 \\ & 33 \end{aligned}$	Surface Integrals	17.6	10	- Find a parametric description of a surface and describe surfaces parametrically - Find the surface area using the parametric description of a surface - Evaluate surface integrals - Evaluate flux integrals	Surface integral	$\begin{aligned} & \text { 17.6: \#19, 21, 23, } \\ & 25,27,29,31,33, \\ & 43,45,47,49,51 \end{aligned}$	Scalar S19E2\#4 S19FE\#16 S19FE\#17 S18FE\#15 S18FE\#16 S18FE\#17 F19FE\#16 F18FE\#17 Vector S18FE\#18 F19FE\#17 F18FE\#18
$\begin{aligned} & \hline 34 \\ & 35 \end{aligned}$	Stokes' Theorem	17.7	Practice	- Use Stokes' Theorem to evaluate line integrals and surface integrals - Use Stokes' Theorem to find circulation	Stokes' Theorem	$\begin{aligned} & \text { 17.7: } \# 11,13,15, \\ & \text { 17, 19, 21, } 23,29, \\ & 41 \end{aligned}$	S19FE\#18 F19FE\#19 S18FE\#19 F18FE\#19
$\begin{aligned} & 36 \\ & 37 \end{aligned}$	The Divergence Theorem	17.8	Practice	- Use the Divergence Theorem to compute net outward flux	Divergence Theorem	$\begin{aligned} & \text { 17.8: \#13, 15, 17, } \\ & \text { 19, 21, 23, 25, 27, } \\ & 29,31,33,35, \end{aligned}$	S19FE\#19 F19FE\#18 F19FE\#20 S18FE\#20 F18FE\#20

*Answers to the practice problems are included in the textbook starting on page A-61.

