FBSOM 10
 WA 26100-FALL 2023 DR. HOOD

LESSON 10 - WARM UP

(Spring 22 Exam 1 \#5) Suppose $z=f(x, y)$ has level curves shown here. The surface formed by the graph of f could be which of the following?
a) Hyperboloid of 2 sheets
b) Elliptic paraboloid c) Elliptic cone $z=\frac{x^{2}}{a^{2}}+y^{2}=c$
d) Hyperbolic paraboloid $z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=c$

POLL 1
$\ln (a)$ continuous $u>0$
$\sqrt[3]{v}$ continuous $v \neq 0$
Evaluate

$$
\begin{aligned}
\lim _{(x, y) \rightarrow\left(8, e^{3}\right)} \ln (\sqrt[3]{x y}) & =\ln \left(\sqrt[3]{8 e^{3}}\right) \\
& =\ln (2 e) \\
& =\ln (2)+\ln (e) \\
& =1+\ln (2)
\end{aligned}
$$

a) $\ln (2)$
b) $\frac{1}{3} \ln (2)$

$$
\text { c) } 1+\ln (2)
$$

Poll 2

(Spring 2017 Exam 1 \#6)

$$
x=0 \quad \lim _{y \rightarrow 0} \frac{-2 y}{\sqrt{y^{2}}}=
$$

Evaluate:
a) 3

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x-2 y}{\sqrt{x^{2}+y^{2}}}
$$

b) 1
c) The limit does not exist

$$
\text { H:MPI } f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Pf $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(2 x^{2}+y^{2}\right)}{4 x^{2}+2 y^{2}}=\lim _{u \rightarrow 0} \frac{\sin (u)}{2 u}$
$u=2 x^{2}+y^{2}$

$$
f(x, y)= \begin{cases}\frac{\sin \left(2 x^{2}+y^{2}\right)}{4 x^{2}+2 y^{2}}, & (x, y) \neq(0,0) \\ b, & (x, y)=(0,0)\end{cases}
$$

Find the value of b that makes this function continuous.
a) 2
b) $\frac{1}{2}$
c) $\frac{1}{4}$

$$
\begin{gathered}
=\frac{1}{2} \lim _{u \rightarrow 0} \frac{\sin (u)}{u}=\frac{1}{2} \cdot 1 \\
b=\frac{1}{2}
\end{gathered}
$$

d) No such value of b exists

P| DT: $f(x, y)= \begin{cases}\frac{\sin \left(2 x^{2}+y^{2}\right)}{4 x^{2}+2 y^{2}}, & (x, y) \neq(0,0) \\ \frac{1}{2}, & (x, y)=(0,0)\end{cases}$

MUDDIIEST POINT

What was the muddiest point from today's lecture?
a) Limits of functions of two variables
b) Path
c) Continuity
d) None - understood everything today

