FBSON 12
 MA 26100-FALL 2023 DR. HOOD

LESSON 12 - WARM UP
(Spring 23 Exam 1\#10) If $f(x, y)=x y^{2}+y e^{x^{2}}+5$, find $f_{x x}$.
a) $y e^{x^{2}}\left(1+x^{2}\right) \quad f_{x x}=0+2 y e^{x^{2}}+y(2 x)^{2} e^{x^{2}}$
b) $2 y e^{x^{2}}\left(1+2 x^{2}\right)$
c) $2 x e^{x^{2}}+y^{2}$

$$
f_{x}=y^{2}+y(2 x) e^{x^{2}}
$$

$$
f_{x x}=0+2 y e^{x^{2}}+y(2 x)^{2} e^{x^{2}}
$$

$$
=2 y e^{x^{2}}\left(1+2 x^{2}\right)
$$

d) $2 x y e^{x^{2}}$

$$
\begin{array}{ll}
\frac{\partial z}{\partial x}=x y^{2} & \frac{\partial x}{\partial t}=2 \\
\frac{\partial z}{\partial y}=x^{2} y+y^{2} & \frac{\partial y}{\partial t}=2 t
\end{array}
$$

(Similar to Spring 17 Exam 1 \#8) Let

$$
z=f(x, y)=\frac{1}{2} x^{2} y^{2}+\frac{1}{3} y^{3}
$$

$x=s+2 t$ and $y=t^{2}$. Find z_{t} at the point $(s, t)=(2,1) y=1^{2}=1$
a) 14

$$
\frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \cdot \frac{d y}{d t}
$$

b) 8
c) 42
d) 32

$$
=\left(x y^{2}\right) \frac{\partial x}{\partial t}+\left(x^{2} y+y^{2}\right) \frac{d y}{d t}
$$

$$
=\left(x y^{2}\right) 2+\left(x^{2} y+y^{2}\right)(2 t) \left\lvert\, \begin{aligned}
& x=4 \\
& y=1 \\
& s=2 \\
& t=1
\end{aligned} \quad \sqrt{42}\right.
$$

$$
=4 \cdot 1^{2} \cdot 2+\left(4^{2} \cdot 1+1^{2}\right) \cdot 2 \cdot 1=8+17 \cdot 2=34+8
$$

POLL 2
Suppose $z=z(x, y)$ is defined implicitly by

$$
e^{x y z}-2=0
$$

Find $\frac{\partial z}{\partial y}$.
a) $\frac{-z}{y}$

$$
\frac{\partial}{\partial y}\left[e^{x y z}-2\right]=0
$$

b) $x y e^{x y z}$
c) $\frac{y}{z}$

$$
\begin{aligned}
& \text { PDTQ Q PMPMS } \\
& e^{x y z}-2=0 \\
& \frac{\partial z}{\partial y}=-\frac{z}{y}
\end{aligned}
$$

MUDDIEST POINT

What was the muddiest point from today's lecture?
a) Chain Rule with 1 dependent variable
b) Chain Rule with 2 dependent variables
c) Implicit Differentiation
d) None - understood everything today

