LESSON 12 MA 26100-FALL 2023 Dr. Hood

LESSON 12 – WARM UP

(Spring 23 Exam 1 #10) If $f(x, y) = xy^2 + ye^{x^2} + 5$, find $f_{X} = y^{2} + y(ax)e^{x^{2}}$ f_{xx} . $f_{XX} = O + aye^{\chi^2} + y(2x)e^{\chi^2}$ a) $ye^{x^2}(1+x^2)$ $= 2ye^{\chi^2}(1+z\chi^2)$ b) $2ye^{x^2}(1+2x^2)$ *c*) $2xe^{x^2} + y^2$

 $d) 2xye^{x^2}$

 $\frac{\partial z}{\partial x} = xy^2$ dy = st POLL 7 $\frac{\partial z}{\partial y} = \chi^2 y + y^2$ (Similar to Spring 17 Exam 1 #8) Let $z = f(x, y) = \frac{1}{2}x^2y^2 + \frac{1}{3}y^3$ @ s-2 t=1 x=2+2·1=4 x = s + 2t and $y = t^2$. Find z_t at the point $(s, t) = (2, 1)y = |z|^2 = |z|$ → = 洗 + → → dy *a*) 14 $= (\chi \gamma^2) \stackrel{dx}{\neq} + (\chi^2 \gamma + \gamma^2) \stackrel{dy}{\neq}$ *b*) 8 = $(xy^2) a + (x^2y + y^2)(at) \begin{vmatrix} x = 4 \\ y = 1 \end{vmatrix}$ ya *d*) 32 $(4, 1^{2}, 2 + (4^{2}, 1 + 1^{2}), 2) =$

POLL 2

b) xye^{xyz}

с) <u>у</u>

Suppose z = z(x, y) is defined implicitly by $e^{xyz} - 2 = 0$ Find $\frac{\partial z}{\partial y}$. $a) \frac{-z}{\partial y}$ $a = \frac{-z}{\partial y}$ $a = \frac{-z}{\partial y}$

POLL 2 - GRAPHS

 $\frac{\partial z}{\partial y} = -\frac{z}{y}$

MUDDIEST POINT

What was the muddiest point from today's lecture?

- a) Chain Rule with 1 dependent variable
- b) Chain Rule with 2 dependent variables
- c) Implicit Differentiation
- d) None understood everything today