FBSOM 13
 WA 26100-FALL 2023 DR. HOOD

Implicit Differentiation
(Fall 22 Exam $1 \# 10$) $\quad F(x, y)=0=\left(x^{2}+y^{2}\right)^{3}-8 x^{2} y^{2}$ Consider $\left(x^{2}+y^{2}\right)^{3}=8 x^{2} y^{2}$. Find the derivative $\frac{d y}{d x}$ at the point $(x, y)=(-1,1)$.
a) -1

$$
\begin{aligned}
& y)=(-1,1) . \\
& \frac{d y}{d x}=\frac{-F_{x}}{F_{y}}=-\frac{\left[3\left(x^{2}+y^{2}\right)^{2}(2 x)-2.8 x y^{2}\right]}{\left.\left[3\left(x^{2}+y^{2}\right)^{2}(2 y)-2.8 x^{2} y\right]\right|_{y=+1} ^{x}=-1}
\end{aligned}
$$

(b) 1
c) 0
d) The derivative does not exist
e) $\frac{1}{2}$

$$
=1
$$

(Fall 22 Exam 1 \#10)

$$
D_{\vec{u}} f=\frac{\partial f}{\partial x}(a, b) u_{1}+\frac{\partial f}{\partial y}(a, b) u_{2}
$$

Compute the directional derivative $D_{\mathbf{u}} f$ of

$$
f(x, y)=x y+x^{3}
$$

at the point $(1,2)$ in the direction of $\langle 1,-1\rangle=\vec{v}$

$$
\frac{\partial f}{\partial x}=y+\left.3 x^{2}\right|_{\substack{x=1 \\ y=2}}=2+3=5
$$

a) 4
b) $2 \sqrt{3}$
c) $2 \sqrt{2}$
d) $3 \sqrt{2}$

$$
\begin{aligned}
& \frac{\partial f}{\partial y}=x \left\lvert\, \begin{array}{l}
x=1 \\
y=2
\end{array}=1\right. \\
& \vec{u}=\frac{\vec{u}}{|\vec{v}|}=\frac{\leq 1,-1\rangle}{\sqrt{2}} \\
& D_{u} f=5 \cdot \frac{1}{\sqrt{2}}+1\left(-\frac{1}{\sqrt{2}}\right)=\frac{4}{\sqrt{2}}=2 \sqrt{2}
\end{aligned}
$$

(Spring 23 Exam 1 \#11)
Find the directional derivative of

$$
\begin{aligned}
\frac{\overrightarrow{\partial f}}{|\overrightarrow{\nabla f}|}=\vec{u}=\frac{\vec{v}}{|\vec{v}|} & =\frac{\langle 3,-2\rangle}{\sqrt{9+4}} \\
& =\frac{\langle 3,-2\rangle}{\sqrt{13}}
\end{aligned}
$$

in the direction of greatest increase of f at $x=1$ and $y=0$. steepest ascent
a) $3 \hat{1}$

$$
\begin{aligned}
& \text { Heppest ascent } \\
& \vec{\nabla} f=\left.\left\langle 3 x^{2} e^{-2 y},-2 x^{3} e^{-2 y}\right\rangle\right|_{x=1}, 0=0 \\
& y=2
\end{aligned}
$$

b) $3 \hat{\imath}-2 \hat{\jmath}$

$$
\vec{\nabla} f=\vec{v}=\langle 3,-2\rangle \rightarrow \vec{u}=\vec{\nabla}|\vec{\nabla}|
$$

c) $\sqrt{5}$
d) $\sqrt{13}$
$D_{\vec{u}} f=$

$$
=\frac{|\vec{\nabla} f|^{2}}{|\nabla f|}=|\vec{\nabla} f|=\sqrt{13}
$$

Consider the hyperbolic paraboloid:

$$
z=-x^{2}+y^{2}
$$

Surface:

Level Curves:

Consider the hyperbolic paraboloid:

$$
z=f(x, y)=-x^{2}+y^{2}
$$

Gradient:

$$
\nabla f=?\langle-2 x, 2 y\rangle
$$

Direction of steepest ascent

MUDDIIEST POINT

What was the muddiest point from today's lecture?
a) Directional Derivative
b) Gradient
c) Direction of Steepest Ascent
d) None - understood everything today

