FBSOM 14
 MA 26100-FALL 2023 DR. HOOD

(Fall 14 Exam 1 \#8)

For which direction $\overrightarrow{\mathbf{u}}$ will the directional derivative of $f(x, y)=x y^{-2}$ at the point $(2,1)$ have the value 0 ?
a) $\langle 1,-4\rangle$
b) $\left\langle\frac{1}{\sqrt{17}}, \frac{4}{\sqrt{17}}\right\rangle$

$$
\begin{aligned}
& 0=D \vec{u} f=\overrightarrow{\nabla f} \cdot \vec{u} \\
& \vec{\nabla} f=\left\langle y^{-2},-2 x y^{-3}\right\rangle \left\lvert\, \begin{array}{l}
x=2 \\
y=1
\end{array}\right.
\end{aligned}
$$

$$
=\langle 1,-4\rangle \quad \stackrel{\rightharpoonup}{n}=\left\langle u_{1}, u_{2}\right\rangle
$$

c) $\langle 4,1\rangle$
d) $\left\langle\frac{4}{\sqrt{17}}, \frac{1}{\sqrt{17}}\right\rangle$

$$
\begin{aligned}
& \overrightarrow{\nabla f} \cdot \vec{u}=0 \quad \\
& \langle 1,-4\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle=0 \quad \sqrt{\vec{u} \mid=1} \sqrt{u_{1}^{2}+u_{2}^{2}}= \\
& u_{1}-4 u_{2}=0 \quad u_{1}=4 u_{2}
\end{aligned}
$$

Consider the hyperbolic paraboloid:

$$
z=-x^{2}+y^{2}
$$

Surface:

Level Curves:

Consider the hyperbolic paraboloid:

$$
z=f(x, y)=-x^{2}+y^{2}
$$

Gradient:
$\nabla f=\langle-2 x, 2 y\rangle$

Direction of steepest ascent

Consider the hyperbolic paraboloid:

$$
F(x, y, z)=z+x^{2}-y^{2}=0
$$

Gradient:
$\nabla F=\langle 2 x,-2 y, 1\rangle$
$\nabla F(a, b, c)$ is normal to the surface at (a, b, c)

Gradient is normal to surface:

(Fall 17 Exam 1 \#11)

$$
F(x, y, z)=x y^{2} z^{3}-12=0
$$

Find the tangent plane to the level surface

$$
\begin{aligned}
& \text { the level surface } \vec{\nabla} \cdot\langle x-a, y-b, z-c\rangle=0 \\
& x y^{2} z^{3}=12 \\
& F_{x}(x-a)+F_{y}(y-b)+F_{z}(z-c)=0
\end{aligned}
$$

at the point $(3,2,1)$
a) $x+y+z=6$

$$
\text { b) } 3 x+2 y+z=14
$$

$$
\text { c) } x+3 y+9 z=18
$$

$$
\vec{h}=\langle 1,3,9\rangle
$$

$$
\begin{aligned}
& F_{x}(x-a)+F_{y}(y-b)+F_{z}(z-c)=0 \\
& \begin{aligned}
\nabla F & =\left\langle y^{2} z^{3}, 2 x y z^{3}, 3 x y^{2} z^{2}\right\rangle \begin{array}{l}
x=3 \\
y=2 \\
z=1
\end{array} \\
& =\langle 4,12,36\rangle \\
& =4\langle 1,3,9\rangle
\end{aligned} \\
& \langle 1,3,9\rangle \cdot\langle x-3, y-2, z-1\rangle=0
\end{aligned}
$$

Find the linear approximation of

$$
f(x, y)=e^{x} \cos (y)
$$

near the point $(0,0)$.
a) $L(x, y)=1+x$
b) $L(x, y)=1+x-y$
c) $L(x, y)=x+y$
d) $L(x, y)=1+x+y$
(Fall 15 Exam 1 \#7)
Consider the function $f(x, y, z)=x y z$. Which of the following is true?

1) $d f=x d x+y d y+z d z$
2) If $\Delta x=\Delta y=\Delta z=0.2$, then the error estimated by using differentials at $(1,2,1)$ is $\Delta f=1$
3) Its linear approximation at $(1,1,1)$ is $L=x+y+z-2$
a) All are true
b) Only 2) and 3) are true
c) Only 3) is true

MUDDIEST POINT

What was the muddiest point from today's lecture?
a) Directional Derivative
b) Gradient
c) Direction of Steepest Ascent
d) None - understood everything today

