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Find the absolute extrema of

f(x,y) = —x? — 2xy — 9y* + 48x + 96y
.\V’i)( l(/u\d OUrV.CS

Y= v C+Y)= K

Subject to the constraint g

Sx+y—54=0 w%\un
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Let g(x,y) = x% + y? — 1 = 0 be the constraint curve. Let
(a,b) = (1,0) and the parameterize the constraint curve by
x(s) = cos(s) and y(s) = sin(s). What is the relationship
between the tangent vector 7')(0) and the gradient V)g(a, b)?

T (S)= <X(&) Y7 y
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a) T(0) is parallel to Vg(a, b) T (o)
b) T(0) is orthogonal to Vg(a b) l (1,0
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(Spring 2023 Exam 2 #3)

Find the maximum of f(x,y,z) = x + y + z subject to the
constraint (x — 1)%+y? + z% = 1.

a)l++/3
bh)1—+/3
c) V3




Find numbers x, y, z whose sum is 27 and the sum of whose
squares are as small as possible. L 9\
_ 27

X+Yyt=zx-
a)x=y=10andz =7
b)x=y=z=9 Wi X T
c)x=8y=9z=10



MUDDIEST POINT

What was the muddiest point from today’s lecture?

a) Lagrange multiplier
b) Gradient of the constraint curve
c) Solving the system of equations

d) None — understood everything today
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