FBCOH 17
 MA 26100-FALL 2023 DR. HOOD

Critical $f_{x}=0=2 x\left(y^{3}-y\right)$
(Fall 16 Exam 2 \#2) Points: $f_{y}=0=x^{2}\left(3 y^{2}-1\right)+2 y$
According to the Second Derivative Test, the critical points of the function
(0,0)
$(1,-1)$
$(-1,-1)$

$$
f(x, y)=x^{2}\left(y^{3}-y\right)+y^{2}
$$

Are:

$$
2 x\left(y^{3}-y\right)=0
$$

a) Two saddle points

$$
2 x=0
$$

$$
\text { ok } y^{3}-y=0
$$

b) Two saddle points, one undetermined
c) One max, one min, one undetermined

$$
\begin{aligned}
& \begin{array}{l}
x=0 \\
y=0
\end{array} \quad f_{y}=0 \rightarrow 0+2 y=0 \rightarrow y=0 \\
& \begin{array}{rl}
f y=-1 \quad f y=0 & \rightarrow \\
x^{2}(3-1)-2=0 \\
2 x^{2}=2 \\
x= \pm 1 & x=1 \quad y=-1 \\
x=-1 \quad y=-1
\end{array}
\end{aligned}
$$

xपाय 1 REITEW

Supplemental Instruction
Monday, October 2, 2023
6:30pm - 8:20pm
UC 114

Find the absolute extrema of

$$
f(x, y)=-x^{2}-2 x y-9 y^{2}+48 x+96 y
$$

Subject to the constraint

Let $g(x, y)=x^{2}+y^{2}-1=0$ be the constraint curve. Let (a, b) $=(1,0)$ and the parameterize the constraint curve by $x(s)=\cos (s)$ and $y(s)=\sin (s)$. What is the relationship between the tangent vector $\overrightarrow{\boldsymbol{T}}(0)$ and the gradient $\vec{\nabla} g(a, b)$?

$$
\begin{aligned}
& \vec{r}(s)=\langle x(s), y(s)\rangle \\
& \vec{I}=\vec{r}^{\prime}(s)=\left\langle x^{\prime}, y^{\prime}\right\rangle
\end{aligned}
$$

a) $\overrightarrow{\boldsymbol{T}}(0)$ is parallel to $\vec{\nabla} g(a, b)$
b) $\overrightarrow{\boldsymbol{T}}(0)$ is orthogonal to $\vec{\nabla} g(a, b)$

$$
\begin{aligned}
& \text { (0) is orthogonal to } \vec{\nabla} g(a, b) \\
& \left.\begin{array}{rl}
\vec{T}(b)
\end{array}\right)\left.\left\langle\frac{d x}{d s}, \frac{\partial y}{\partial s}\right\rangle\right|_{s=0} \\
& =\langle-\sin (s), \cos (c)\rangle \left\lvert\, \frac{1}{s}=0\right. \\
& \\
& =\langle 0,1\rangle
\end{aligned}
$$

(Spring 2023 Exam 2 \#3)
Find the maximum of $f(x, y, z)=x+y+z$ subject to the constraint $(x-1)^{2}+y^{2}+z^{2}=1$.
a) $1+\sqrt{3}$
b) $1-\sqrt{3}$
c) $\sqrt{3}$

Find numbers x, y, z whose sum is 27 and the sum of whose squares are as small as possible.

$$
x+y+z=27 r g
$$

a) $x=y=10$ and $z=7$
b) $x=y=z=9$
$\min x^{2}+y^{2}+z^{2}=f(x, y, z)$
c) $x=8, y=9, z=10$

MUDDIEST POINT

What was the muddiest point from today's lecture?
a) Lagrange multiplier
b) Gradient of the constraint curve
c) Solving the system of equations
d) None - understood everything today

