FBSOM 18
 WA 26100-FALL 2023 DR. HOOD

(Spring 20 Exam 2 \#7)
Find the absolute maximum, M, and the absolute minimum, m, of the function $f(x, y)=x+y$ subject to the constraint $x^{2}-x y+y^{2}=1 .=g$
a) $M=2$ and $m=-2$

$$
\begin{gathered}
\nabla f=\lambda \nabla g \\
\langle 1,1\rangle=\lambda\langle 2 x-y,-x+2 y\rangle
\end{gathered}
$$

b) $M=1$ and $m=-1$
c) $M=1$ and $m=-4$

$$
\begin{aligned}
(C 1=\lambda(2 x-y) & =\nless(2 x-y) \\
1=\lambda(-x+2 y) & =\langle(2 x \rightarrow y=x
\end{aligned}
$$

d) $M=2$ and $m=-1$

$$
\begin{aligned}
& f(1,1)=2=M \\
& f(-1,-))=-2=m
\end{aligned}
$$

$$
x^{2}-x y+y^{2}=1
$$

$$
\begin{array}{r}
x-x y \\
x^{2}-x^{2}+x^{2}=1 \\
1=x= \pm 1
\end{array}
$$

$$
y=x= \pm 1
$$

anNouncements

- No Class on Friday Oct $6 \rightarrow$ No OH
- October Break
- No class on Monday Oct 9
- No recitation on Tuesday Oct 10
- Expect to return exam 1 scores after October Break

Calculate the iterated integral of $f(x, y)=x$ on $R=[0,2] \times[0,1]$

$$
\begin{aligned}
& \int_{0}^{1}\left[\int_{0}^{2} x d x\right] d y \\
= & \int_{0}^{1}\left[\frac{x^{2}}{2}\right]_{0}^{2} d y=\int_{0}^{1}\left[\frac{2^{2}-0}{2}\right] d y \\
= & \int_{0}^{1} 2 d y=[2 y]_{0}^{1}=2
\end{aligned}
$$

a) 1
b) 0
c) 2

Let $R=[0,1] \times[0,2]$. Calculate the double integral
$u-s u b$

$$
\int_{0}^{1}\left[\int_{0}^{2} 2 x y e^{x y^{2}} d y\right] d x
$$

$$
u=x y^{2}
$$

$$
\begin{aligned}
& u=x y \\
& d u=2 x y d y
\end{aligned}
$$

a) $\frac{e^{4}}{4}$

$$
=\int_{0}^{1} \int_{0}^{4 x} e^{u} d u d x
$$

$$
\begin{array}{ll}
Q y=0 & u=0 \\
10 & =4 x
\end{array}
$$

ely $2=2 \quad k=4 x$
b) $\frac{e^{4}-5}{4}$
$=\int_{0}^{1}\left[e^{u}\right]_{0}^{4 x} d x=\int_{0}^{1} e^{4 x}-1 d x$
d) $\frac{5}{4}$

$$
\begin{aligned}
=\left[\frac{e^{4 x}}{4}-x\right]_{0}^{1} & =\frac{e^{4}}{4}-1-\left(\frac{1}{4}-0\right) \\
& =\frac{e^{4}-5}{4}
\end{aligned}
$$

(Spring 2023 Exam 2 \#5) $\quad R=[-1,1] \times[0,5] \quad \operatorname{area}(R)=2.5=10$
Find the average value of the function $f(x, y)=x^{2} y$ over the region R where R is the rectangle with vertices $(\overline{-1}, 0),(\overline{-1}, 5),(\overline{1}, 5)$, and $(\overline{1}, 0)$.
a) $\frac{10}{3}$ $f_{a v}=\frac{1}{\operatorname{arca}(R)} \iint_{R} f(x, y) d A=\frac{1}{10} \int_{-1}^{1} \int_{0}^{5} x^{2} y d y d x$
b) $\frac{25}{3}=\frac{1}{10} \int_{-1}^{1}\left[\frac{x^{2} y^{2}}{2} \int_{0}^{5} d x=\frac{25}{2} \cdot \frac{1}{10} \int_{-1}^{1} x^{2} d x\right.$
c) $\frac{5}{6}$

$$
=\frac{1}{10} \frac{25}{2}\left[\frac{x^{3}}{3}\right]_{-1}^{1}=\frac{1}{10} \cdot \frac{25}{2} \cdot \frac{2 x}{3}=\frac{5}{6}
$$

d) $\frac{25}{6}$

MUDDIEST POINT

What was the muddiest point from today's lecture?
a) Double integral
b) Order of operation
c) Volumes of solids
d) Average value
e) None - understood everything today

