FBSOM 19
 WA 26100-FALL 2023 DR. HOOD

(Spring 15 Exam 2 \#4)

$$
z=3 x+2 y+1=f(x, y)
$$

Find the volume of the solid which lies below the plane:
$3 x+2 y-z+1=0$ and above the rectangle

$$
\mathrm{R}=\{(x, y) \mid-1 \leq x \leq 1,1 \leq y \leq 2\}
$$

a) 11

$$
\begin{aligned}
& 1 \leq x \leq 1,1 \leq y \leq 2\} \\
& V=\iint_{R} f(x, y) d A=\int_{-1}^{1} \int_{1}^{2} 3 x+2 y+1 d y d x
\end{aligned}
$$

b) 13

$$
=\int_{-1}^{1}\left[3 x y+y^{2}+y^{-1}\right]_{1}^{1} d x=\int_{-1}^{1} 3 x[2-1]+\left[2^{2}-1^{2}\right]+
$$

c) $21 / 2$
d) $23 / 2$ $=\int_{-1}^{1} 3 x+4 d x=\left[\frac{3 x^{2}}{2}+4 x\right]_{-1}^{1}$
e) 8

$$
=\frac{3}{8}+4-\left(\frac{z}{2}-4\right)=8
$$

ANNOUNCEMENTS

- HW 17 and HW 18 due tonight at 11:59pm
- Exam 1 scores released
- If you took the exam on Tues Oct 3, your score should be posted
- ADA and Alternate exam scores should be posted in the next week or so.

EXAM 1 SCORES

- Only 1 student left the Test/Quiz number blank
- Several students entered incorrect PUID
-2 points were deducted from total score
- Statistics:
- Mean: 76.7
- Median: 84
-Standard Deviation: 20
- If you believe there was a mistake in the grading, wait to receive your booklet, then contact your lecturer (Dr. Hood for LEC 200 or 600).

Consider the region D between the functions $y=\sqrt{x}$ and $y=x^{3}$ What type of region is it?
a) Type I
b) Type II
c) Type I and Type II

$$
\begin{array}{ll}
\text { d) Neither } & \begin{array}{ll}
D-\{(x, y): 0 \leq x \leq 1, & \left.x^{3} \leq y \leq \sqrt{x}\right\} \\
& =\{(x, y): 0 \leq y \leq 1,
\end{array}
\end{array}
$$

T Type II

$$
\begin{aligned}
& y=\sqrt{x} \rightarrow x=y^{2} \\
& y=x^{3} \rightarrow x=y^{1 / 3}
\end{aligned}
$$

Set up the integral $\iint_{D} f(x, y) d A$ for the region D bounded by $x=y^{2}-1$ and $x=\sqrt{1-y^{2}}$.
a) $\int_{-1}^{1} \int_{\sqrt{1-y^{2}}}^{y^{2}-1} f(x, y) d x d y$
b) $\int_{-1}^{1} \int_{y^{2}-1}^{\sqrt{1-y^{2}}} f(x, y) d x d y$
c) $\int_{y^{2}-1}^{\sqrt{1-y^{2}}} \int_{-1}^{1} f(x, y) d y d x$

(Spring 2023 Exam 2 \#6)
Evaluate $\iint_{R} \frac{\sin (x)}{x} d A$ where R is the region in the xy -plane $=0$ bounded by the x -axis, the line $y=x$, and the line $x=1$. Integrate with respect to y first, then with respect to x.
a) $1-\cos (1)$
b) $-1+\cos (1)$
c) $2+\cos (1)$

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{x} \frac{\sin (x)}{x} d y d x \\
& =\int_{0}^{1} \frac{\sin (x)}{x}[y]_{0}^{x} d x=\int_{0}^{1} \frac{\sin (x)}{4} \\
& =[-\cos (x)]_{0}^{1}=-\cos (1)+1
\end{aligned}
$$

(Spring 2022 Exam 2 \#10)
Change the order of integration for the double integral

$$
\int_{0}^{2} \int_{x^{2}}^{2 x} f(x, y) d y d x
$$

You do not need to compute the integral.
a) $\int_{0}^{2} \int_{\sqrt{y}}^{y / 2} f(x, y) d x d y$
b) $\int_{0}^{4} \int_{y / 2}^{\sqrt{y}} f(x, y) d x d y$

MUDDIEST POINT

What was the muddiest point from today's lecture?
a) Type I and Type II regions
b) Setting up the double integral
c) Switching the order of integration
d) Volumes of solids
e) None - understood everything today

