G880120
 WA 26100-FALL 2023 DR. HOOD

(Fall 16 Exam 2 \#6)
Let D be the triangle with vertices $(0,4),(1,0)$, and $(0,-2)$. Then $\iint_{D} f(x, y) d A$ is:
a) $\int_{0}^{1} \int_{2 x-2}^{4-4 x} f(x, y) d y d x$
b) $\int_{0}^{2} \int_{2+2 x}^{4+4 x} f(x, y) d y d x$
c) $\int_{0}^{4} \int_{2-2 x}^{4-4 x} f(x, y) d y d x$

$0 \leq x \leq 1$

$$
2 x-2 \leq y \leq 4-4 x
$$

ANNOUNCEMENT

- Correction to Quiz Study Guide:

19	Double Integrals over General Regions	16.2	6	- Evaluate double integrals over general regions - Change the order of integration	Order of integration	S19E2\#2 S19E2\#4 S19FE\#10 F19E2\#3 F19FE\#9 F18E2\#4

Which of the following regions represents:

$$
R=\{(r, \theta) \mid 1 \leq r \leq 3,0 \leq \theta \leq \pi\}
$$

Evaluate $\iint_{D} r^{2} \sin (\theta) r d r d \theta$ for the region D bounded by the polar axis and the upper half of the cardioid $r=1+\cos (\theta)$.
a) $32 / 5$

$$
0 \leq \theta \leq \pi
$$

b) 8
$0 \leq r \leq 1+\cos \theta$
c) $8 / 5$
d) 32

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{1+\cos \theta} r^{3} \sin \theta d r l \theta=\int_{0}^{\pi} \sin \theta \\
= & \frac{1}{4} \int_{0}^{\pi}(1+\cos \theta)^{4} \sin \theta d \theta \\
= & -\frac{1}{4} \int_{2}^{0} u^{4} d u=-\frac{1}{4}\left[\frac{u^{5}}{5}\right]_{2}^{0} \\
= & -\frac{1}{4}\left[-\frac{2^{5}}{5}\right]=\frac{8}{5}
\end{aligned}
$$

$$
u=1+\cos \theta
$$

$$
\begin{aligned}
& u=1+\cos \theta d \theta \\
& d u=-\sin \theta d \theta
\end{aligned}
$$

$$
\begin{array}{ll}
Q & =0 \\
\theta=2 \\
\theta=\pi & u=0
\end{array}
$$

$$
\begin{array}{ll}
\text { @ } \theta=0 & u=\alpha \\
\text { @ } \theta=\pi & u=0
\end{array}
$$

(Spring 2015 Exam 2 \#6)

$$
A=\iint_{R} 1 \cdot r d r d \theta
$$

Use integration in polar coordinates to compute the area of the region in the first quadrant inside the circle $(x-1)^{2}+y^{2}=1$ and below the line $y=x$. Recall that $2 \cos ^{2}(\theta)=1+\cos (2 \theta)$
a) $\frac{\pi}{4}+\frac{1}{2}$

$$
y=x
$$

$$
(r \cos \theta-1)^{2}+(r \sin \theta)^{2}=1
$$

b) $\frac{\pi}{2}+\frac{1}{2}$
$r \sin \theta=r \cos \theta$

$$
r^{2} \cos ^{2} \theta-2 r \cos \theta+1+r^{2} \sin ^{2} \theta=x
$$

$$
\begin{aligned}
r^{2} & =2 r \cos \theta \\
& =2 \cos \theta
\end{aligned}
$$

c) π

$$
\tan \theta=1
$$

$$
r=2 \cos \theta
$$

$$
A \leq \theta \leq \frac{\pi}{4} \quad 0 \leq r \leq 2 \cos \theta
$$

$\underbrace{c} \int^{v} x^{r=2 \cos \theta}$

MUDDIEST POINT

What was the muddiest point from today's lecture?
a) Integration in polar coordinates
b) General regions in polar
c) Area integrals
d) Setting up the integral
e) None - understood everything today

