LESSON 20 MA 26100-FALL 2023 Dr. Hood

(Fall 16 Exam 2 #6) Let D be the triangle with vertices (0,4), (1,0), and (0,-2). Then $y_{1}(0|4)$ y = 4 - 42 $\iint_{D} f(x, y) dA \text{ is:}$ (1,0) a) $\int_0^1 \int_{2x-2}^{4-4x} f(x,y) dy dx$ Type I b) $\int_{0}^{2} \int_{2+2x}^{4+4x} f(x,y) dy dx$ (01-J) -2+axc) $\int_{0}^{4} \int_{2-2x}^{4-4x} f(x, y) dy dx$ $0 \le \chi \le 1$ マスーマ ニリニ リーイル

ANNOUNCEMENT

• Correction to Quiz Study Guide:

		I	l	теуюнэ		
19	Double Integrals over General Regions	16.2	6	 Evaluate double integrals over general regions Change the order of integration 	Order of integration	S19E2#2 S19E2#4 S19FE#10 F19E2#3 F19FE#9 F18E2#4
		400			D I I I	04050#0

Which of the following regions represents:

 $R = \{(r, \theta) | 1 \le r \le 3, 0 \le \theta \le \pi\}$

Evaluate $\iint_{D} r^2 \sin(\theta) r dr d\theta$ for the region D bounded by the polar axis and the upper half of the cardioid $r = 1 + cos(\theta)$. $h \leq \theta \leq \pi$ a) 32/5 $\pi \int_{0}^{\pi} t \cos \theta + \frac{1}{r^{3}} \sin \theta dr d\theta = \left[\frac{\pi}{r^{4}} \right]_{0}^{\pi} d\theta$ $\leq r \leq |+ \cos \theta|$ b) 8 $T = \frac{10}{11 \cos \theta} + \frac{10}{11 \cos \theta} + \frac{10}{11 \cos \theta} + \frac{10}{11 \cos \theta} + \frac{10}{10} + \frac{10}{10$ d) 32

A= MIrdrdo (Spring 2015 Exam 2 #6) Use integration in polar coordinates to compute the area of the region in the first quadrant inside the circle $(x - 1)^2 + y^2 = 1$ and below the line y = x. Recall that $2\cos^2(\theta) = 1 + \cos(2\theta)$ $(r\cos\theta - 1)^2 + (r\sin\theta)^2 = 1$ $y = \chi$ rsin $\theta = r \cos \theta$ a) $\frac{\pi}{4} + \frac{1}{2}$ $r^{2}\cos^{2}\theta - 2r\cos^{2}\theta + r^{2}\sin^{2}\theta = 1$ tano= $y^2 = 2r \cos \theta$ b) $\frac{\pi}{2} + \frac{1}{2}$ $r = a cos \Theta$ A = [*c*) π reso OEVE 20050 ロシロシー ~2105B 1.rdrd0

MUDDIEST POINT

What was the muddiest point from today's lecture?

- a) Integration in polar coordinates
- b) General regions in polar
- c) Area integrals
- d) Setting up the integral
- e) None understood everything today