LESSON 23 MA 26100-FALL 2023 Dr. Hood

-> V=T(r)2h (Spring 22 Exam 2 #8) 8. $\int_{-1}^{1} \int_{-\sqrt{1-u^2}}^{\sqrt{1-y^2}} \int_{-1}^{1} (x^2 + y^2)^{3/2} dz dx dy$ y -1525 DEBEZT $\frac{2\pi}{7}$ А. nyr $r^{3}rdzdrd\theta = 2$ $\frac{2\pi}{5}$ Β. 0 4π $\begin{bmatrix} r \\ 5 \end{bmatrix}_0 d\theta = \frac{2}{5}, 2\pi =$ --- 2 D. π Е. $\overline{2}$ F. π

SPHERICAL BOX

Use integration in spherical coordinates to find the volume of a sphere of radius *a*.

a) $4\pi a^2$ b) $\frac{4}{3}\pi a^3$ c) $\frac{2}{3}\pi a^3$

(Spring 23 Exam 2 #11)

Which of the following represents the volume of the solid inside a sphere of radius 2 centered at (0, 0, 2) and outside the sphere of radius 2 centered at (0,0,0)?

a) $\int_0^{2\pi} \int_0^{\pi/3} \int_2^{4\cos\varphi} \rho^2 \sin\varphi \, d\rho \, d\varphi \, d\theta$

b) $\int_{0}^{2\pi} \int_{0}^{\pi/3} \int_{0}^{4\cos\varphi} \rho^{2} \sin\varphi \, d\rho \, d\varphi \, d\theta$

c) $\int_0^{2\pi} \int_0^{\pi/3} \int_{4\cos\varphi}^2 \rho^2 \sin\varphi \, d\rho \, d\varphi \, d\theta$

(Spring 22 Exam 2 #6) $1 = z = \rho \cos \varphi$ Sec $\varphi = \rho$ Choose the triple integral in spherical coordinates that represents the volume of the solid bounded by the cone $z^2 = x^2 + y^2$ and lying between planes z = 1 and z = 2.

a) $\int_{0}^{2\pi} \int_{0}^{2\sqrt{2}} \int_{0}^{\pi/4} \rho^{2} \sin \varphi \, d\frac{\varphi}{\varphi} d\theta$ b) $\int_0^{2\pi} \int_0^{\pi/4} \int_{\sec \varphi}^{2 \sec \varphi} \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta$ c) $\int_0^{2\pi} \int_0^2 \int_0^{\pi/4} \rho^2 \sin \varphi \, d\varphi \, d\varphi \, d\theta$

そころ とこ Q= C DEQEC SecqEpEasery

MUDDIEST POINT

What was the muddiest point from today's lecture?

- a) Converting to spherical coordinates
- b) Setting up the spherical integral
- c) Evaluating spherical integrals
- d) None understood everything today