B8OM 24
 MA 26100 -FILL 2023 DR. HOOD

(Fall 16 Exam 2 \#10)

$$
\begin{aligned}
& 1 \leq \rho \leq 2 \\
& 0 \leq \phi \leq \frac{\pi}{4}
\end{aligned} \quad 0 \leq \theta \leq 2 \pi
$$

Find the volume of the solid enclosed by $x^{2}+y^{2}+z^{2}=1, \Rightarrow \rho=1$ $x^{2}+y^{2}+z^{2}=4$, and $\mathrm{z}=\sqrt{x^{2}+y^{2}} \rightarrow \phi=c=\frac{\pi}{4}$ ${ }^{*} \rho=2$
a) $\frac{14 \pi}{3}\left(1-\frac{\sqrt{2}}{2}\right)$
b) $\frac{14 \pi}{3}\left(1+\frac{\sqrt{2}}{2}\right)$

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{2}[-\cos \phi]_{0}^{\frac{\pi}{4}} \rho^{2} d \rho d \theta=\left[-\frac{\sqrt{2}}{2}+1\right] \int_{0}^{2 \pi} \int_{1}^{2} \rho^{2} d \rho d \theta \\
= & \left.\sigma_{2}\right][8-1] 2 \pi
\end{aligned}
$$

$=\int_{0}^{2 \pi} \int_{1}[-\cos \phi]_{0}^{2 \pi}$
$=\left[1-\frac{\sqrt{2}}{2}\right] \int_{0}^{2}\left[\frac{e^{3}}{3}\right]_{1}^{2} d \theta=\left[1-\frac{62}{2}\right]\left[\frac{8}{3}-\frac{1}{3}\right] 22$
c) $3 \pi\left(1-\frac{\sqrt{2}}{2}\right)$

$$
\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{\frac{\pi}{4}} \rho^{2} \sin \phi d \phi d \rho d \theta
$$

$$
=\frac{14 \pi}{3}\left[1-\frac{\sqrt{2}}{2}\right]
$$

ANNOUNCEMENTS

- Dr. Hood must leave promptly after the $4: 30 \mathrm{pm}$ class to substitute for another class

Given a seesaw with mass m_{1} at x_{1} and mass m_{2} at x_{2}, find the center of mass \bar{x}. (Hint: set the moments equal).

$$
x_{1}<\frac{c}{x}<x_{2}
$$

$$
m_{1}\left|x_{1}-\bar{x}\right|=m_{2}\left|x_{2}-\bar{x}\right|
$$

a) $\bar{x}=\frac{x_{1}+x_{2}}{2}$

$$
m_{1}\left(\bar{x}-x_{1}\right)=m_{2}\left(x_{2}-\bar{x}\right)
$$

b) $\bar{x}=\frac{m_{1} x_{1}+m_{2} x_{2}}{2 m_{1}}$

$$
\begin{aligned}
m_{1} \bar{x}+m_{2} \bar{x} & =\frac{m_{1} x_{1}+m_{2} x_{2}}{\bar{x}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
\end{aligned}
$$

total mass mass

Let R be the region under the curve $y=x^{2}$ for $0 \leq x \leq 1$. Find $y=x^{2}$ the moment M_{x} for the density $\rho(x, y)=x+y$.
a) $\frac{7}{20}=m \quad M_{x}=\iint_{D} y \rho(x, y) d A$

b) $\frac{17}{60}=M_{y}$ $=\int_{0}^{1} \int_{0}^{x^{2}} y(x+y) d y d x=\int_{0}^{1}\left[\frac{y^{2} x}{2} x+\frac{y^{3}}{3}\right]_{0}^{x^{2}} d x$
cc) $\frac{11}{84}=m_{x}=\int_{0}^{1} \frac{x^{5}}{2}+\frac{x^{6}}{3} d x=\left[\frac{x^{6}}{12}+\frac{x^{7}}{3-7}\right]_{0}^{1}=\frac{1}{12}+\frac{1}{21}=\frac{11}{84}$

$$
\bar{x}=\frac{M_{y}}{m}=\frac{17 / 60}{7 / 20}=\frac{17}{21} \quad \bar{y}=\frac{M_{x}}{m}=\frac{11 / 84}{7 / 20}=\frac{55}{147}
$$

(Spring 23 Exam 2 \#12)
Find the x -coordinate of the center of mass of a plate in the shape of the region bounded by $y=x, y=\frac{1}{2} x$, and $x=1$ with a density $\rho(x, y)=2 x$.
a) $\frac{4}{5} \quad m=\int_{0}^{1} \int_{\frac{x}{2}}^{x} 2 x d y d x$
b) $\frac{5}{6} \quad=\int_{0}^{1}[2 x y]_{\frac{x}{2}}^{x} d x=\int_{0}^{1} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{1 /=}=\frac{1}{3}^{x=1} x x$
d) $\frac{3}{4} \bar{x}=\frac{1}{m} \int_{0}^{1} \int_{\frac{x}{2}}^{x} x \cdot 2 x d y d x=3 \int_{0}^{1} 2 x^{2}[y]_{\frac{x}{2}}^{x} d x$
e) $\frac{0}{7}=3 \int_{0}^{1} x^{3} d x=3\left[\frac{x^{4}}{4}\right]_{0}^{1}=\frac{3}{4}$

Find the z-coordinate of the center of the solid elliptic parabola $z=x^{2}+y^{2}$ between $z=0$ and $z=4$ with constant density $\rho(x, y)=1$.
a) $\frac{7}{8}$
b) $\frac{21}{8}$
c) 2

MUDDIEST POINT

What was the muddiest point from today's lecture?
a) Center of mass equations
b) Moments
c) Solving for center of mass
d) None - understood everything today

