LESSON 25 MA 26100-FALL 2023 Dr. Hood

(Fall 22 Exam 2 #10)

Find the center of mass of the rectangle $\{(x, y)|0 \le x \le 1, 0 \le y \le 2\}$ where the density function if $y_{1} - xy_{2}$ $m = \iint e dA = \iint a xy dy dx = \iint x \begin{bmatrix} y^{2} \\ y \end{bmatrix}^{2} dx$ given by $\rho(x, y) = xy$. *a)* (1,2) - 2 2 *b)* (0,0) $\overline{X} = \prod_{m=1}^{n} \prod_{n=1}^{n} \frac{1}{2} \sum_{n=1}^{n} \frac{1}{2} \sum_{n=$ *C*) = 2 (24)

[OI]X[O]2]

ANNOUNCEMENTS

• HW 24 Questions 10 – Typo – removed from assignment

• Dr. Hood must leave promptly after the 4:30pm class to substitute for another class

Which of the following plots represents the 2D vector field $\vec{F}(x,y) = \langle x,y \rangle$? $(x,y) = \langle x,y \rangle$?

Which of the following is NOT a rotational field?

a)
$$\vec{F}(x,y) = \langle -2y, 2x \rangle$$

b) $\vec{F}(x,y) = \left\langle \frac{y}{\sqrt{x^2 + y^2}}, \frac{-x}{\sqrt{x^2 + y^2}} \right\rangle$
c) $\vec{F}(x,y) = \langle -x, y \rangle$

(Fall 16 Exam 2 #11)

11. The graph below is the gradient vector field of which equation?

The graph below is the gradient vector field of which equation?
$$\vec{F} = \nabla \vec{F}$$

A: $f(x,y) = x^2 + y^2 + 10$ (37, 24)
B: $f(x,y) = x^2 - y^2 + 10$ (37, 24)
C: $f(x,y) = e^{y-x}$ (4, 27)
C: $f(x,y) = e^{y-x}$ (2, 24)
D: $f(x,y) = e^{x-y}$ (2, 24)
E: $f(x,y) = y$
E: $f(x,y) = \frac{y}{x}$ (2, 24)
E: $f(x,y) = \frac{y}{x}$ (3, 24)
E: $f(x,y) = \frac{y}{x}$ (3, 24)
E: $f(x,y$

(Spring 22 Exam 2 #4)

4. Which vector field corresponds to the one pictured here?

A.
$$\vec{F}(x,y) = \langle 1, -y \rangle$$

B. $\vec{F}(x,y) = \langle -x,y \rangle$
C. $\vec{F}(x,y) = \langle -y,x \rangle$
D. $\vec{F}(x,y) = \langle 1,y \rangle$
E. $\vec{F}(x,y) = \langle y,1 \rangle$
F. $\vec{F}(x,y) = \langle -y,1 \rangle$

MUDDIEST POINT

What was the muddiest point from today's lecture?

- a) Plotting a vector field
- b) Radial field
- c) Rotational field
- d) Gradient field
- e) None understood everything today