4880124
 WA 26100-FALL 2023 DR. HOOD

(Fall 22 Exam 2 \#10)
$[0,1] \times[0,2]$
Find the center of mass of the rectangle $\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 2\}$ where the density function if given by $\rho(x, y)=x y$.
a) $(1,2)$

$$
\begin{aligned}
& x \leq 1,0 \leq y \leq 2\} \text { where the density function it } \\
& m=x y . \\
& m=\int_{R} e d A=\int_{0}^{1} \int_{0}^{2} x y d y d x=\int_{0}^{1} x\left[\frac{y^{2}}{2}\right]_{0}^{2} d x
\end{aligned}
$$

b) $(0,0)$
c) $\left(\frac{1}{2}, 1\right)$ $=2\left[\frac{x^{2}}{2}\right]_{0}^{1}=1$
d) $\left(\frac{2}{3}, \frac{4}{3}\right)$
$\bar{x}=\frac{1}{m} \int_{0}^{1} \int_{0}^{2} x \cdot(x y) d y d x=\frac{2}{1} \int_{0}^{1} x^{2} d x$ $=2\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{2}{3}$
D

ANNOUNCEMENTS

- HW 24 Questions 10 - Typo - removed from assignment
- Dr. Hood must leave promptly after the $4: 30 \mathrm{pm}$ class to substitute for another class

Which of the following plots represents the 2D vector field $\vec{F}(x, y)=\langle x, y\rangle ? \quad(x, y)=(1,0) \quad \vec{F}(1,0)=\langle 1,0)$

Which of the following is NOT a rotational field?
a) $\vec{F}(x, y)=\langle-2 y, 2 x\rangle$
b) $\vec{F}(x, y)=\left\langle\frac{y}{\sqrt{x^{2}+y^{2}}}, \frac{-x}{\sqrt{x^{2}+y^{2}}}\right\rangle$
c) $\vec{F}(x, y)=\langle-x, y\rangle$

Which of the following is NOT a rotational field?
a) $\vec{F}(x, y)=\langle-2 y, 2 x\rangle$
b) $\vec{F}(x, y)=\left\langle\frac{y}{\sqrt{x^{2}+y^{2}}}, \frac{-x}{\sqrt{x^{2}+y^{2}}}\right\rangle$

(x, y)	\vec{F}_{c}
$(1,0)$	$\langle-1,0\rangle$
$(0,1)$	$\langle 0,1\rangle$

c) $\vec{F}(x, y)=\langle-x, y\rangle$

(Fall 16 Exam 2 \#11)

11. The graph below is the gradient vector field of which equation?

E. $f(x, y)=\frac{y}{x}$

Q $(1,0) \quad \vec{F}=\langle f(x), 0\rangle$

(Spring 22 Exam 2 \#4)

4. Which vector field corresponds to the one pictured here?
A. $\overrightarrow{\boldsymbol{F}}(x, y)=\langle 1,-y\rangle$
B. $\boldsymbol{F}(x, y)=\langle-x, y\rangle$
C. $\overrightarrow{\boldsymbol{F}}(x, y)=\langle-y, x\rangle$
D. $\overrightarrow{\boldsymbol{F}}(x, y)=\langle 1, y\rangle$
E. $\overrightarrow{\boldsymbol{F}}(x, y)=\langle y, 1\rangle$
F. $\boldsymbol{F}(x, y)=\langle-y, 1\rangle$

MUDDIEST POINT

What was the muddiest point from today's lecture?
a) Plotting a vector field
b) Radial field
c) Rotational field
d) Gradient field
e) None - understood everything today

