ES8OM 26
 WA 26100-FALL 2023 DR. HOOD

(Spring 22 Exam 2 \#4)

$$
\vec{F}(x, y)=\langle P(x, y), \quad Q(x, y)\rangle
$$

4. Which vector field corresponds to the one pictured here?

ANNOUNCEMENTS

- Dr. Hood must leave promptly after the $4: 30 \mathrm{pm}$ class to substitute for another class

Find the value of $\int_{C} f(x, y) d s$ where C is the curve parameterized by $\overrightarrow{\boldsymbol{r}}(t)=\langle t, t\rangle$ for $0 \leq t \leq 1 . \quad f(x, y)=x+y$

$$
\left|\vec{r}^{\prime}(t)\right|=|\langle 1,1\rangle|=\sqrt{1^{2}+1^{2}}=\sqrt{2}
$$

a) 2
b) 1

$$
\int_{0}^{1}(t+t) \sqrt{2} d t=2 \sqrt{2} \int_{0}^{1} t d t
$$

c) $\sqrt{2}$
d) $2 \sqrt{2}$

$$
=2-62\left[\frac{t^{2}}{2}\right]_{0}^{1}=\sqrt{2}
$$

Evaluate the line integral $\int_{C} x^{2} y d s$ where C is the top half of the circle $x^{2}+y^{2}=4$.

$$
\begin{aligned}
\vec{r}(t)= & \langle 2 \cos (t), 2 \sin (t)\rangle \\
& 0 \leqslant t \leqslant \pi
\end{aligned}
$$

a) $\frac{16}{3}$

$$
\begin{gathered}
0 \leqslant t \leqslant \pi \\
\left|\vec{r}^{\prime}(t)\right|=|\langle-2 \sin (t), 2 \cos (t)\rangle|=2
\end{gathered}
$$

b) $\frac{32}{3}$
c) $\frac{8}{3}$

$$
\begin{aligned}
& \int_{0}^{\pi}(2 \cos (t))^{2} 2 \sin (t) \cdot 2 d t=16 \int_{0}^{\pi} \cos ^{2}(t) \sin (t) d t \\
& u=\cos (t) \quad @ t=0 \quad u=1 \\
& d u=-\sin (t) \quad @ t=\pi \quad u=-1 \\
& -16 \int_{1}^{-1} u^{2} d u=-16\left[\frac{u^{3}}{3}\right]_{1}^{-1}=-16\left[-\frac{1}{3}-\frac{1}{3}\right]=\frac{32}{3}
\end{aligned}
$$

d) $\frac{2}{3}$

Find $\int_{C} x e^{y z} d s$ where C is the line segment from the point $(0,0,0)$ to $(1,2,-2)$. dircetion vector $\vec{v}=\langle 1,2,-2\rangle$
a) $\frac{3}{8}\left(1-e^{-4}\right)$

$$
\begin{aligned}
& \text { point } P=(0,0,0) \\
& \vec{r}(t)=\langle t, 2 t,-2 t\rangle \quad 0 \leqslant t \leqslant 1 \\
& \left|\vec{F}^{\prime}(t)\right|=|\langle 1,2,-2\rangle|=3
\end{aligned}
$$

b) $\frac{3}{8} e^{-4}$
c) $\frac{3}{4}\left(e^{-4}-1\right)$
d) $\frac{3}{4} e^{-2}$

$$
=\frac{-3}{8} \int_{0}^{-4} e^{u} d u=\frac{3}{8}\left[1-e^{-4}\right]
$$

(Spring 23 Final Exam \#13)
Compute the line integral $\int_{C}(2 x+y) d s$ where C is the line segment from $(0,0)$ to $(6,8)$.
a) 80
b) 120
c) 140
d) 100
e) 160

MUDDIEST POINT

What was the muddiest point from today's lecture?
a) Setting up a line integral
b) Parameterizing the curve C
c) Solving the line integral
d) None - understood everything today

