FSBOT 27
 MA 26100 -FALL 2023 DR. HOOD

(Spring 23 Final Exam \#13)
Compute the line integral $\int_{C}(2 x+y) d s$ where C is the line segment from $(0,0)$ to $(6,8)$.
direction vector $\vec{v}=\langle 6,8\rangle$
a) 80

$$
\vec{r}(t)=\langle 6 t, 8 t\rangle \quad 0 \leq t \leq 1
$$

b) 120

$$
\begin{aligned}
\vec{r}(t) & =\langle 6 t, 8 t\rangle \\
|\vec{r}|(t)\left|=|\vec{v}|=\sqrt{6^{2}+8^{2}}=2 \sqrt{3^{2}+4^{2}}\right. & =2.5 \\
& =10
\end{aligned}
$$

c) 140
d) 100

$$
\int_{0}^{1}(2(6 t)+8 t) \cdot 10 d t=200 \int_{0}^{1} t d t
$$

e) 160

$$
=200\left[\frac{t^{2}}{2}\right]_{0}^{1}=100
$$

Find the value of $\int_{C} \overrightarrow{\boldsymbol{F}} \cdot \overrightarrow{\boldsymbol{T}} d s$ where C is the semicircle parameterized by $\overrightarrow{\boldsymbol{r}}(t)=\langle\cos (t), \sin (t)\rangle$ for $0 \leq t \leq \pi$, and $\overrightarrow{\boldsymbol{F}}(x, y)=\langle-y, x\rangle$

$$
\vec{r}^{\prime}(t)=\langle-\sin (t), \cos (t)\rangle
$$

a) 0
b) π

\int^{π}

$\langle-\sin (t), \cos (t)\rangle-\langle-\sin (t), \cos (t)\rangle{ }^{1.0} t^{\prime}$
c) $2 \pi=\int_{0}^{\pi} \sin ^{2}(t)+\cos ^{2}(t) d t$ $=\int_{0}^{\pi} 1 \cdot d t=\pi$

Which of the following vector fields $\overrightarrow{\boldsymbol{F}}(x, y)$ results in the least amount of work along the curve C parameterized by $\overrightarrow{\boldsymbol{r}}(t)=\langle t, t\rangle$
for $0 \leq t \leq 1$?
b)

$$
|\vec{F} \cdot \vec{F}|=|\vec{F}| \cos \theta
$$

$|\overrightarrow{\vec{k}} \cdot \overrightarrow{7}|=|\vec{k}||\vec{T}| \cos \theta=|\vec{F}|$

large

Calculate the flux of $\overrightarrow{\boldsymbol{F}}=\langle 2 x, 2 y\rangle$ across the unit circle oriented counterclockwise.
a) $0 \quad \vec{r}(t)=\langle\cos (t), \sin (t)\rangle$
b) 2π

$$
\vec{r}^{\prime}(t)=\langle-\sin (t), \cos (t)\rangle
$$

c) 4π
d) $8 \pi \int_{C} \vec{F} \cdot \vec{N} d s$ $=\int_{0}^{2 \pi}\left\langle 2 \cos \left(\frac{1}{x} t\right), 2 \sin (t)\right\rangle \cdot\langle\cos (t), \sin (t)\rangle d t$

$$
\int_{0}^{2 \pi} 2 d t=2 \cdot 2 \pi=4 \pi
$$

Estimate the circulation of the vector field in the where curve C is the square with corners at $(0,0),(1,0),(1,1)$, and $(0,1)$, oriented counterclockwise.
a) 0
b) Positive
c) Negative

(Spring 22 Exam 2 \#11)
Given the force field $\overrightarrow{\boldsymbol{F}}(x, y, z)=\langle y, z, x\rangle$, find the work required to move an object along the straight-line segment from $(0,0,0)$ to $(2,3,4)$.
a) 13
b) 9
c) 29
d) 26
e) 18

MUDDIIEST POINT

What was the muddiest point from today's lecture?
a) Evaluating vector line integrals
b) Work
c) Flux
d) Circulation
e) None - understood everything today

